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Abstract—Simultaneous localization and mapping (SLAM) in
the deformable environment has encountered several barricades.
One of them is the lack of a global registration technique. Thus
current SLAM systems heavily rely on template based methods.
We propose KernelGPA, a novel global registration technique to
bridge the gap. We define nonrigid transformations using a kernel
method, and show that the principal axes of the map can be solved
globally in closed-form, up to a global scale ambiguity along each
axis. We propose to solve both the global scale ambiguity and
rigid poses in a unified optimization framework, yielding a cost
that can be readily incorporated in sensor fusion frameworks.
We demonstrate the registration performance of KernelGPA
using various datasets, with a special focus on computerized
tomography (CT) registration. We release our code1 and data
to foster future research in this direction.

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) in
the rigid (or static) environment has witnessed a huge suc-
cess [13]. However in the nonrigid environment, SLAM is
largely an open problem [25]. One of the major barricades
of extending SLAM from the rigid to nonrigid environment
is the shortage of principled global registration techniques
that handle deformations. At this stage, there are only several
options available in this regards, i.e., the low-rank shape basis
decomposition [14], the isometric nonrigid structure-from-
motion [40], and more recently the generalized Procrustes
analysis (GPA) with the linear basis warps (LBWs) [4].

On the other hand, matching a deformed shape to a template,
termed shape-from-template (SfT) in [8, 37], is a relatively
mature problem. In computer graphics, the deformation be-
tween a template and a deformed shape can be computed
within many deformation frameworks, e.g., the as-rigid-as-
possible deformation model [49], the embedded deformation
graph [1, 50], Lie-bodies [19], and isometric deformations [8];
see the review papers [53, 34]. In robotics, the SfT meth-
ods have been implemented in several deformable tracking
systems. To name a few, we refer to DynamicFusion [38],
Surfelwarp [20], KillingFusion [46], SobolevFusion [47], MIS-
SLAM [48], and DefSLAM [36]. None of these systems has a
principled global deformable registration, except for the recent
work DefSLAM [36] which implements the isometric nonrigid
structure-from-motion method from [40].

1Code and data: https://bitbucket.org/clermontferrand/deformableprocrustes

In this work, we propose a novel global registration tech-
nique for deformable SLAM. To make the context clear, we
consider the following constraints:

1) No temporal information. We assume observations are
made without sequential information, thus technologies
based on tracking do not apply here.

2) No template. We assume a template of the environment
is not available. We also disallow alternation methods by
incrementally constructing and matching to a template.

3) No aids on pose estimation. We assume additional
information on the sensor’s pose is not available.

In general, we assume that the only available information is
the geometric correspondences between sensor observations.
Our target is to obtain: a) the estimate of the environment, b)
the nonrigid transformations that can explain the sensor data,
and c) the estimate of the sensor’s rigid poses.

We consider the case where sensor readings are interpreted
as point-clouds. The closest work to this purpose is the
DefGPA developed in [4], where the globally optimal map
and the deformable transformations are estimated in closed-
form using the LBW models. In the language of SLAM, the
results in [4] show that the principal axes of the environment
map can be estimated globally, up to a global scale ambiguity
along each axis. The authors proposed a method to estimate
the global scale ambiguity using pairwise rigid Procrustes
analysis, by assuming sufficient co-visibility across sensor
measurements at different poses. This is a strong assumption
for SLAM, as observations in SLAM are typically local.

In this work, we give a non-trivial extension of DefGPA [4]
to deformable SLAM:

• First, we use a kernel method to model deformations,
and term the resulting GPA as KernelGPA. We show
that KernelGPA can be solved globally in closed-form,
up to an unknown global scale ambiguity. KernelGPA
provides extra modeling power compared to the DefGPA
framework [4] based on the LBWs.

• Second, we give insights that the global scale ambiguity
and the rigid transformations are correlated, by assuming
the transformation to be as-rigid-as-possible (ARAP).
Therefore we can solve both in a unified optimization
framework. We do not require good co-visibility as in
[4], and the new cost term provides a natural extension
to the sensor fusion framework.

https://bitbucket.org/clermontferrand/deformableprocrustes


The rest of this paper is organized as follows. We briefly re-
view related work on deformation models and deformable reg-
istration techniques in Section II. We present our deformable
SLAM formulation in Section III and draw its connection to
the GPA problem with deformations. We present a deformable
transformation model using kernel methods in Section IV,
and in Section V we derive that the principal axes of the
environment map can be solved globally in closed-form up to
a global scale ambiguity Λ. Then in Section VI, we propose
to solve both Λ and the rigid poses in a unified optimization
framework to accommodate local observations in SLAM. In
Section VII, we provide implementation details to reproduce
the work. We present our experimental results in Section VIII,
and conclude the paper in Section IX.

II. RELATED WORK

A. Deformation Models

We shall use landmarks as the environment representation
and define deformations accordingly. This representation has
a long history in shape analysis [28, 29]. There has been a
rich class of smooth deformation models (also termed smooth
warps) developed based on landmark representations, e.g., the
Free-Form Deformations (FFD) [45, 51], the Radial Basis
Functions (RBF) [10, 17] and the Thin-Plate Spline (TPS)
[15, 10]. Beyond smooth models, there exist a class of models
defined piece-wisely by implementing local transformations
associated to a set of down-sampled points and modeling the
deformations on other parts by interpolation. Representatives
of such models include the ARAP deformation model [49],
the embedded deformation graph [1, 50], and Lie-bodies [19].

Beyond landmark based models, other models based on
curves [27, 54] or surfaces have been proposed. Some well-
known models include level sets [39], medial surfaces [11],
Q-maps [32, 33], and Square Root Normal Fields (SRNF)
[26, 35]. Some models implement an articulated skeleton
structure. Representative works include the medial axis repre-
sentations (M-rep) [16], and SCAPE [2]. We refer interested
readers to the review papers [53, 34] for more details.

B. Global Registration Techniques

1) Generalized Procrustes analysis: The generalized Pro-
crustes analysis (GPA) framework was used as a fundamental
technique in shape analysis to obtain an initial alignment.
Both the rigid and affine transformations were recovered in
the classical literature [28, 22, 43]. Recently, a novel GPA
technique with deformation models was proposed in [4]. The
deformation model in [4] is termed LBWs, which includes the
affine transformation and a rich class of nonlinear deformation
models [45, 51, 10, 17, 7] using radial-basis functions, e.g, the
well-known TPS [10].

The work [4] is the closest to ours. However, we use a kernel
method to model deformations, which is a novel deformation
model compared to the LBWs used in [4]. In addition, our
estimation method on the global scale does not require the
global co-visibility of correspondences, thus is more suitable
for SLAM applications. The work in [4] shows that GPA with

LBWs can be solved globally by an eigenvalue decomposition.
We will show that the proposed KernelGPA can be solved
in a similar manner, while being more powerful in modeling
deformations.

2) Nonrigid structure-from-motion: Structure-from-motion
(SfM) is a well-known global registration method that han-
dles camera projections [23]. We do not consider projective
cameras in this work, thus will only mention several nonrigid
SfM (NRSfM) methods for references. One line of NRSfM
methods use low-rank shape bases [12, 52, 14]. These methods
model deformations as a linear combination of the basis
shapes, which are jointly factorized by the singular value
decomposition (SVD). Another line of NRSfM methods use
differential geometry, where the deformations are constrained
to be isometric or conformal, e.g., the isometric NRSfM [40]
which has been successfully implemented in DefSLAM [36].
We refer interested readers to a recent work using Cartan’s
connections [41] and references therein.

III. FORMULATION OF DEFORMABLE SLAM AND ITS
CONNECTION TO GPA

A. Deformable SLAM

Environment Modeling. We define the surrounding envi-
ronment of the sensor, i.e., the map in SLAM, by a collection
of 3D points M ∈ R3×m. The onboard sensor observes the
environment M at discrete time points t = 1, 2 . . . , n. We
denote the sensor’s pose at time t by (Rt ∈ SO(3), tt ∈ R3)
and its reading at time t by Pt ∈ R3×mt given as the relative-
measurement of a portion of environment points Mt ∈ R3×mt .
Concretely, we can write Mt = MΓt with the help of a
visibility matrix Γt whose columns are constructed from the
standard basis vectors in Rm:

Γt = [ekt ] ∈ Rm×mt .

The basis vector ekt in Γt means that the k-th point in M
occurs in Mt. It can be easily verified that Γ>t 1m = 1mt

.
Deformable Transformation. In deformable SLAM, the

environment deforms over time. We model the environment
deformation as a time varying function Φt(·). In particular
the deformed environment M̃t at time t is:

M̃t = Φt(Mt) = Φt(MΓt).

In the noise-free case, the sensor reading Pt at t corresponds
to the measurement of the deformed 3D environment M̃t:

Pt = R>t (M̃t − tt1
>) ⇐⇒ RtPt + tt1

> = M̃t.

We fairly assume the deformation function Φt(·) is invertible,
and thus define an inverse mapping Φ−1t (·) such that:

MΓt = Φ−1t (M̃t) = Φ−1t (RtPt + tt1
>) = yt(Pt).

Here we use yt(·) as a composition of both the rigid transfor-
mation (Rt, tt) and the deformation Φ−1t (·).

Deformable SLAM. We formally define deformable SLAM
as the problem that estimates 1) the nonrigid transformations
yt(·), and 2) the surrounding environment map M using a
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Fig. 1: Deformable SLAM as the generalized Procrustes
analysis (GPA) problem with deformable transformations.

collection of sensor readings (Pt, Γt) at all time points t =
1, 2 . . . , n. Formally, we formulate deformable SLAM as:

min

n∑
t=1

ϕt with ϕt = ‖yt(Pt)−MΓt‖2F . (1)

The rigid poses (Rt, tt) are composed in yt(·) in this formu-
lation and will be decomposed afterwards.

B. Connection to Generalized Procrustes Analysis

The deformable SLAM formulation (1) is essentially the
problem of generalized Procrustes analysis (GPA) with de-
formable transformation models, see Fig. 1. If we model the
deformable transformations yt(·) as the LBWs, this problem
can be solved by the deformable GPA method in [4], which
states that the principal axes of M can be globally solved in
closed-form based on the eigenvalue decomposition.

In this work, we propose to use a kernel method to model
the transformation yt(·), and show that the resulting problem
can be recast as an eigenvalue problem in (20) which can be
solved by a result in [4]. We build upon this result to estimate
both M and yt(·) up to an unknown global scale Λ. Then we
propose to solve Λ and rigid poses (Rt, tt) by the cost (25).

IV. TRANSFORMATION MODEL

A. Nonlinear Transformation Model

We start our discussion by modeling transformation yt(p)
as the combination of an affine transformation [At, at] and a
nonlinear deformation, which is termed LBWs in [4]:

yt(p) = Atp + at + W>
t θt(p), (2)

where Wt ∈ Rl×3 is a parameter matrix to be estimated and
θt(·) : R3 � Rl is a mapping to the l-dimensional feature

space. The components of θt(·) are typically chosen as radial
basis functions [17], e.g., the TPS [45, 10].

Applying transformation model (2) to the point-cloud Pt

(whose columns represent points), we have:

yt(Pt) = AtPt + at1
> + W>

t θt(Pt), (3)

where we have abused the notation to write:

θt(Pt) = [θt(Pt[1]), θt(Pt[2]), . . .θt(Pt[mt])],

and we denote Pt[k] the k-th point in Pt.

B. Dual Formulation

The nonlinear deformation component W>
t θt(Pt) is a

linear regression model which admits a dual formulation [9].
To show the point, we examine the following regularized
regression problem with cost:

ηt(Wt) =
∥∥W>

t θt(Pt)− Zt

∥∥2
F + µt ‖Wt‖2F , (4)

where µt ‖Wt‖2F is a regularization term to avoid overfitting,
and Zt the regression output which can be considered as Zt =
MΓt −AtPt + at1

> in the context of this paper. The first
order optimality condition of the cost (4) satisfies:

Wt = θt(Pt)

(
− 1

µt
W>

t θt(Pt) +
1

µt
Zt

)>
︸ ︷︷ ︸

Ωt

= θt(Pt)Ωt,

(5)
where we introduce the dual variable Ωt. By introducing a
kernel matrix Kt = θt(Pt)

>θt(Pt), we rewrite the nonlinear
deformation component W>

t θt(Pt), i.e., the transpose of (5)
post-multiplied by θt(Pt), into a dual formulation:

W>
t θt(Pt) = Ω>t θt(Pt)

>θt(Pt)︸ ︷︷ ︸
Kt

= Ω>t Kt. (6)

The elements of Kt = [ki,j ] are vector inner-products in the
features space θt(·), as ki,j = θt(Pt)[i]

>θt(Pt)[j]. The spirit
of the kernel method is to design the inner products in the
feature space directly from the data space as k(Pt[i],Pt[j])
without explicitly assigning the basis functions in θt(·).

The kernel design allows more flexibility in terms of mod-
eling power than the LBWs in [4]. From equation (6), we can
find a kernel representation for each LBWs. In contrast, not
every kernel model can be described by LBWs e.g., a Gaussian
kernel induces infinite dimension in the feature space.

C. The Proposed Transformation Model

By using the dual formulation in (6), we rewrite the trans-
formation model (3) as:

yt(Pt) = AtPt + at1
> + Ω>t Kt, (7)

with [At, tt] and Ωt being the transformation parameters to be
estimated. The regularization term µt ‖Wt‖2F can be rewritten
as a function of the dual variable Ωt as:

µt ‖Wt‖2F = µt ‖θt(Pt)Ωt‖2F = µttr
(
Ω>t KtΩt

)
. (8)



Lastly, the transformation model yt(p) in (2) acting on an
arbitrary point p becomes:

yt(p) = Atp + at + Ω>t kt(p), (9)

where kt(p) = θt(Pt)
>θt(p) denotes a vector whose i-th

element is given by k(Pt[i], p) using the kernel function.

V. GLOBALLY OPTIMAL SOLUTION TO PRINCIPAL AXES
OF THE ENVIRONMENT MAP

A. Constraints to Resolve Environment Ambiguities
It is well-known that SLAM in the rigid case is defined up

to a global transformation, with 6 DOFs ambiguities. We first
remove these 6 DOFs by the following 6 constraints as in [4]:{

M1 = 0 (10)
MM> = Λ = diag(λ21, λ

2
2, λ

2
3), (11)

where λ1, λ2, λ3 are unknown parameters.
In the classical rigid SLAM literature [13, 44, 5], the

transformation ambiguity (i.e., the 6 gauge freedoms caused
by a global rigid transformation) is removed by fixing one
of the robot poses, e.g., the first robot pose to the identity
of SE(3). However, the way of removing 6 gauge freedoms as
above is not yet realized in the robotics community. We briefly
recapitulate the ideas in [4] in the appendix for completeness.

Importantly, the estimate of both the transformation model
and the map can be established up to an unknown Λ (see
[4] for affine models and TPS warps). We shall derive similar
results using kernel models. In other words, we can deter-
mine the diagonal elements of Λ afterwards with additional
properties of underlying deformations, e.g., by assuming the
deformation is as-rigid-as-possible.

B. Formulation of Deformable SLAM
Using transformation model (7) and regularization (8), we

write the cost function at time t as:

ϕt(At, at, Ωt,M) =
∥∥∥AtPt + at1

> + Ω>t Kt −MΓt

∥∥∥2
F

+ µttr
(
Ω>t KtΩt

)
.

(12)
Then we use constraints M1 = 0 and MM> = Λ to fix
6 gauge freedoms of the problem, and propose the following
formulation for deformable SLAM:

min

n∑
t=1

ϕt(At, at, Ωt,M) s.t. M1 = 0, MM> = Λ.

(13)
In formulation (13), we only use relative observations to the
environment in the local coordinate frame of each robot pose.
This is the minimal set of information required to establish
the estimate for both the transformation model and the map.

For many SLAM applications, e.g., outdoor mapping, ad-
ditional sensors, e.g., Inertial Measurement Units (IMU) are
used to assist pose estimation. As we shall see shortly, it is
straightforward to extend the solution of formulation (13) to
standard sensor fusion frameworks.

In the remainder of this section, we derive the globally
optimal solution to formulation (13) in closed-form.

C. Eliminating Transformation Parameters

We notice that in problem (13), the transformation parame-
ters At, at and Ωt are linearly dependent on M. This presents
a separable structure and allows us to reduce the optimization
to M only using the variable projection method [21]. We
derive the linear dependence of At, at and Ωt on M as
follows.

We denote P̃t = [P>t , 1]>. Given M and Ωt, the affine
part [At, at] for time t is:[

At, at

]
= −(Ω>t Kt −MΓt)P̃

†
t (14)

where P̃†t = P̃>t (P̃tP̃
>
t )
−1 is the Moore–Penrose pseudo-

inverse. Here we assume that the 3D point-cloud P̃t is non-
degenerate, thus the inverse of P̃tP̃

>
t exists. If this is not the

case, we can model the problem in the 2D space and use λ1, λ2
only in (11). It is also recommended to use (P̃tP̃

>
t )
† to replace

(P̃tP̃
>
t )
−1 as a numerical workaround. Back substituting (14)

to ϕt(At, at, Ωt,M) and denoting Pt = P̃>t (P̃tP̃
>
t )
−1P̃t,

we obtain for time t:

ϕt(Ωt,M) =
∥∥∥(Ω>t Kt −MΓt)(I−Pt)

∥∥∥2
F

+ µttr
(
Ω>t KtΩt

)
.

(15)

It remains to derive the dependence of Ωt on M. Given M, the
optimal Ωt from ϕt(Ωt,M) satisfies the optimality equation:

Kt(I−Pt)(KtΩt − Γ>t M>) + µtKtΩt = O, (16)

where we have used the fact that I − Pt is idempotent. By
assuming that the kernel matrix Kt is invertible, we write the
estimate of Ωt w.r.t. the estimate of M as:

Ωt = H>t Γ>t M>, (17)

where we define the data dependent matrix constant:

Ht = (I−Pt) (Kt(I−Pt) + µtI)
−1
. (18)

Substituting (17) into (14), we obtain the estimate of [At, at]
w.r.t. the estimate of M as:[

At, at

]
= −MΓt(HtKt − I)P̃†t . (19)

To fully determine the affine parameters [At, at] via (19)
and the deformable parameters Ωt via (17), it remains to
determine the estimate of the environment map M.

D. Optimal Estimate of the Environment Map

Substituting (17) into (15) (i.e., the cost ϕt(Ωt,M)), we
obtain the final cost function in M:

ϕt(M) = tr
(
MΓtQtΓ

>
t M>) ,

where

Qt = (HtKt − I)(I−Pt)(K
>
t H>t − I) + µtHtKtH

>
t .

Lastly, we reduce the cost
∑n

t=1 ϕt(At, at, Ωt,M) in prob-
lem (13) to

∑n
t=1 ϕt(M) = tr

(
M
(∑n

t=1 ΓtQtΓ
>
t

)
M>)

and reach the following optimization problem in M only:

min
M

tr
(
MQM>) s.t. M1 = 0, MM> = Λ, (20)



where we define Q =
∑n

t=1 ΓtQtΓ
>
t .

Formulation (20) can be solved globally in closed-form if
the all-one vector 1 is an eigenvector of Q [4].

Proposition 1. In problem (20), Q1 = 0 which means 1 is
an eigenvector of Q corresponding to eigenvalue 0.

Proof: It can be verified that Γ>t 1m = 1mt
as e>k 1m = 1.

The matrix Pt is the orthogonal projector to the range space of
P̃>t . Given that 1mt

is a column of P̃>t thus in the range of
P̃>t , we have Pt1mt = 1mt which means (I − Pt)1mt =
0. From above, we conclude (I − Pt)Γ

>
t 1m = 0 and

H>t Γ>t 1m = 0. Therefore Qt1 = 0 thus Q1 = 0.
We recapitulate necessary results to describe the solution to

problem (20), and refer readers to [4] for detailed proofs.

Lemma 1. (Theorem 1 in [4].) If u is an eigenvector of Π,
then the solution to the optimization problem

max
X

tr
(
X>ΠXΛ

)
s.t. X>X = I, X>u = 0, (21)

is the d top eigenvectors of Π excluding the vector u.

By letting X = M>
√

Λ
−1

and u = 1, we have the
following Lemma 2 which is in the same spirit of Proposition
1 in [4]. We have rewritten the maximization problem as a
minimization problem to accommodate the form in (20).

Lemma 2. (Proposition 1 in [4].) If 1 is an eigenvector of Π,
then the globally optimal solution to problem

min
M
−tr

(
MΠM>) s.t. MM> = Λ, M1 = 0, (22)

is M =
√

ΛX> where X comprises the d top eigenvectors of
Π excluding the vector 1.

We consider Π = −Q in (22) which is problem (20). From
Lemma 2, we obtain the following result immediately.

Proposition 2. The solution to problem (20) is M =
√

ΛX>

where X comprises the d top eigenvectors of −Q excluding
the vector 1. As Q is positive definite thus −Q is negative
definite, the d top eigenvectors of −Q excluding the vector 1
are the d bottom eigenvectors of Q excluding the vector 1.

E. Optimal Estimate of the Transformation Models

Upon obtaining the map estimate M =
√

ΛX>, we decide
the transformation parameters [At, at] by (19) and Ωt by (17).
The optimal transformation in (9) can be written as:

yt(p) = −MΓt(HtKt − I)P̃†t p̃ + MΓtHtkt(p),

where p̃ = [p>, 1]>.
Similarly the optimal transformation yt(Pt) in (7) for the

point-cloud Pt is:

yt(Pt) = −MΓt(HtKt−I)Pt+MΓtHtKt =
√

ΛSt, (23)

where we have used M =
√

ΛX> and have defined

St = −X>Γt(HtKt − I)Pt + X>ΓtHtKt. (24)

It is worth noting that St is estimated without knowing Λ.

Therefore, both the transformation and map estimates are
decided up to an unknown Λ which can be estimated after-
wards as a posterior by using additional information on the
allowed deformations.

VI. ESTIMATION OF RIGID TRANSFORMATIONS AND THE
GLOBAL SCALE AMBIGUITY

A. Jointly Solving for Rigid Transformations and Λ

We want the solution to be as-rigid-as-possible, that means
we want Φt(·) to be close to an identity mapping. This results
in the following constraint:

RtPt + tt1
> ≈ yt(Pt) =

√
ΛSt,

where St has been calculated as equation (24).
We thus propose to jointly estimate the rigid transformation

[Rt, tt] and the unknown Λ together by solving the following
optimization problem:

min
Rt, tt,Λ

n∑
t=1

∥∥∥RtPt + tt1
> −
√

ΛSt

∥∥∥2
F
. (25)

In what follows, we show how to solve formulation (25)
robustly, and then discuss the extension to sensor fusion.

B. Solving Formulation (25) Robustly

1) Exploiting Separability: Formulation (25) is a nonlinear
least squares problem which needs to be solved iteratively. To
proceed, we exploit the separability to eliminate the translation
tt first. Given Rt and Λ, the translation estimate tt is:

tt = −
1

mt

(
RtPt −

√
ΛSt

)
1, (26)

where mt = nnz(Γt) is the number of columns in Pt.
We denote the zero-centered matrices:

P̄t = Pt −
1

mt
Pt11>, S̄t = St −

1

mt
St11>,

and rewrite formulation (25) as follow:

min
Rt,Λ

n∑
t=1

∥∥∥RtP̄t −
√

ΛS̄t

∥∥∥2
F

(27)

We solve formulation (27) iteratively using the standard Lie
group optimization technique. A good initialization is required.

2) Initialization: In formulation (27), given Λ, the affine
estimate of Rt without considering the SO(3) constraints are:

Rt =
√

ΛS̄tP̄
†
t =
√

ΛLt, (28)

where we define Lt = S̄tP̄
†
t . We enforce the orthonormal

constraints R>t Rt = I afterwards by minimizing:

Λ0 = argmin
Λ

n∑
t=1

∥∥L>t ΛLt − I
∥∥2
F .

This is a linear least-squares problem in Λ that can give the
initialization Λ0 in closed-form.

Given Λ0, the initial rotation Rt for each time t can
be solved from formulation (27) in closed-form by pairwise
special orthogonal Procrustes analysis [3, 24] between P̄t and√

ΛS̄t, or we can round
√

ΛLt to a proper rotation Rt.
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Fig. 2: The tuning parameters of KernelGPA. We use the 20-
fold cross-validation error (CVE) as the metric encoded by the
colors. We use the Gaussian kernel and decide the bandwidth
σ by the p-quantile of the pairwise Euclidean distances. We
set µt = µ for t = 1, 2 . . . , n and search for µ.

VII. IMPLEMENTATION DETAILS

A. Model Selection

We implement k(·, ·) using the Gaussian kernel:

ki,j = k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
, (29)

and set the bandwidth parameter σ to the p-quantile of the
Euclidean distances between training points:

σ = p -quantile (‖xi − xj‖) , for all (i 6= j). (30)

We use the same regularization strength µt = µ for all t =
1, 2 . . . , n. We suggest searching for tuning parameters at p =
0.2 and µ = 0.05. Some examples are provided in Fig. 2,
using the G-fold cross-validation defined in what follows.

B. Cross-Validation

We use cross-validations to perform model selection and
evaluation. We define the Cross-Validation Error (CVE) as:

CVE =

√√√√ 1

κ

n∑
t=1

‖Yt(Pt)−M?Γt‖2F ,

where M? is the estimate of the environment, and κ =∑n
t=1 nnz(Γt) =

∑n
t=1mt is a normalization constant by

summing up the number of nonzeros in Γt. The point-cloud
Yt(Pt) is computed by the G-fold cross-validation as follows.

We group all the points in the environment to G mutually
exclusive subsets g1, g2, . . . , gG. We index the points in gk
(k = [1 : G]) occurring in the point-cloud Pt as Pt[gk]. Now
for each subset gk we solve the GPA with all the points except
those in gk. This solution is denoted as gkM? for the optimal
map estimate and gky?

t () (t ∈ [1 : n]) for the t-th optimal
transformation. We predict the transformed positions of the
points in Pt[gk] as gky?

t (Pt[gk]).
Then we correct the gauge of gky?

t (Pt[gk]) to the reference
frame of M? using the similarity Procrustes between gkM?

and M?. Denote the corrected points as gk
C y?

t (Pt[gk]):
gk
C y?

t (Pt[gk]) = sgkRgk
gky?

t (Pt[gk]) + tgk1>,

where the scale sgk , rotation Rgk and translation tgk are in
closed form [4]. Lastly, the point-cloud Yt(Pt) is defined as:

Yt(Pt) = [g1C y?
t (Pt[g1]),

g2
C y?

t (Pt[g2]), . . . ,
gG
C y?

t (Pt[gG])].

If we set G as the number of points in the environment
M, we obtain the leave-one-out cross-validation used in [4].
Practically, we use 20-fold cross-validation to choose tuning
parameters, and the leave-one-out cross-validation to evaluate
the fitness of the registration.

VIII. EXPERIMENTS

A. Comparison to DefGPA [4]

We first rerun the experiment in [4] (i.e., Table 2 in
[4]) and report the new statistics in Table I. We use three
evaluation metrics: RMSE r defined as the root-mean-squared-
error (RMSE) of the cost (1), CVE-Leave1 for the leave-
one cross-validation and CVE-Gfold for the G-fold cross-
validation defined in Section VII-B. We set G = 20.

We use GPA with Euclidean (EUC) transformation, affine
(AFF) transformation and the TPS(c) warps as benchmark
methods. We denote TPS(c) the TPS warp by assigning c
control points evenly along each principal axis (see [4] for
details), and use the same tuning parameters as in [4]. For
KernelGPA, we use hyper-parameters p = 0.2, µ = 0.05 for
all the datasets. The effect of different kernel tuning parameters
is reported in Fig. 2 by the 20-fold cross-validation.

1) Estimation of Λ: We estimate Λ by [4] (i.e., Algorithm 1
in [4]) and by the proposed method (i.e., by minimizing cost
(25) in Section VI) respectively. We report the statistics for
each method in Table I, and find that for most of the cases,
there is no significance difference between the proposed Λ
estimation method and the one in [4]. As we will show shortly
in Section VIII-B and Fig. 3, this is because there are little (in
the Face dataset) or no missing correspondences (in others) in
these data, thus the two methods are not distinguishable.

2) Performance of KernelGPA: We report the statistics of
KernelGPA in the last column of Table I. We see that the
proposed KernelGPA outperforms other methods in terms of
the CVE-Leave1 in all cases, and the CVE-Gfold for most of
cases. This clearly shows that KernelGPA can generate more
coherent registrations, as it provides more modeling power.



EUC AFF TPS(3) TPS(5) TPS(7) KernelGPA

Λ Estimation by [4] ours by [4] ours by [4] ours by [4] ours by [4] ours

Face RMSE r 6.84 6.54 6.64 4.64 4.68 3.88 3.90 3.65 3.66 1.52 1.48
CVE-Leave1 7.01 6.91 7.01 5.17 5.20 4.52 4.54 4.33 4.34 2.74 2.68
CVE-20fold 7.30 7.79 7.90 6.40 6.44 5.89 5.91 5.74 5.76 5.42 5.29
Time [s] 0.3579 0.0449 0.0794 0.0435 0.0286 0.0194 0.0358 0.0290 0.0404 0.1058 0.1351

HandBag RMSE r 30.23 18.90 19.08 9.16 9.19 7.12 7.13 6.75 6.76 3.27 3.24
CVE-Leave1 30.48 19.26 19.45 9.59 9.62 7.62 7.63 7.30 7.30 3.95 3.92
CVE-20fold 31.84 21.72 21.88 12.36 12.28 10.69 10.58 10.41 10.30 7.12 7.00
Time [s] 0.9535 0.0101 0.0387 0.0189 0.0531 0.0261 0.0556 0.0474 0.0789 0.0660 0.2733

Pillow RMSE r 23.44 16.84 16.94 7.82 7.84 5.47 5.49 5.02 5.04 2.96 2.99
CVE-Leave1 24.01 18.11 18.21 10.09 10.11 8.25 8.30 7.99 8.06 7.79 7.76
CVE-20fold 25.18 20.83 20.80 13.54 13.32 11.89 11.99 11.72 11.86 13.02 12.44
Time [s] 0.2532 0.0058 0.0263 0.0143 0.0272 0.0164 0.0361 0.0270 0.0439 0.0178 0.0624

LiTS RMSE r 19.85 15.74 15.93 13.50 13.64 11.57 11.67 10.77 10.86 6.29 5.83
CVE-Leave1 20.50 17.44 17.62 16.63 16.78 16.09 16.21 16.02 16.13 15.58 14.37
CVE-20fold 20.83 18.01 18.19 17.49 17.64 17.43 17.56 17.45 17.57 18.77 16.80
Time [s] 0.2279 0.0040 0.0391 0.0160 0.0263 0.0806 0.0859 0.4159 0.4278 0.0111 0.1268

ToyRug RMSE r 0.88 0.47 0.20 0.29 0.15 0.23 0.12 0.21 0.11 0.06 0.06
CVE-Leave1 0.98 0.59 0.30 0.43 0.27 0.39 0.25 0.38 0.23 0.28 0.16
CVE-20fold 1.00 0.62 0.33 0.49 0.32 0.44 0.29 0.42 0.27 0.30 0.17
Time [s] 14.2786 0.0615 0.3916 0.2072 0.4876 0.4898 0.7582 1.1369 1.4432 0.1731 0.7257

TABLE I: The statistics of different registration methods by rerunning the experiments in [4]. We compare with the Euclidean
GPA (EUC), and DefGPA with the affine transformation (AFF) and three TPS warps with different number of control points
along the principal axes i.e., TPS(3), TPS(5), TPS(7) as in [4]. For KernelGPA, we use parameters p = 0.2, µ = 0.05 for all
the cases. We use Matlab implementations for all the methods.
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Fig. 3: Performance improvements of the proposed Λ esti-
mation method over the one in [4]. We gradually remove the
correspondences in the HandBag dataset [6] (with 155 × 8
correspondences in total), and compute the relative decrease
of the CVE metrics by 20-trial Monte-Carlo runs.

B. Estimation of Λ

We give a detailed evaluation of the proposed Λ estimation
method and the one in [4]. In specific, we gradually reduce the
number of correspondences of the data, and compute the CVE-
Leave1 and CVE-Gfold statistics for each case. We perform
this experiment using the HandBag dataset which contains 8
point-clouds with 155 points for each. We use the relative
improvement CVEGain to benchmark the performance:

CVEGain =
CVE by [4]− CVE by proposed

CVE by [4]
.

If CVEGain > 0 then the proposed Λ estimation method is
better than the one in [4], and otherwise if CVEGain < 0.

We report the result in Fig. 3 with 20-trial Monte-Carlo runs
for each case. It is clear that the proposed Λ estimation method
outperforms the one in [4], if the data contains more missing
correspondences which is the case for SLAM. Moreover, the
worst case scenario shows a comparable accuracy with a
merely 1% difference. In addition, the proposed method Λ
estimation does not rely on pairwise co-visibility, thus can
handle even more missing correspondences where the one in
[4] will run into algorithm failures.

C. Pose Estimation

Owing to the lack of deformable datasets with ground-truth
poses, we use simulation data to evaluate the quality of the
estimated rigid poses obtained from Section VI.

We use a circular pose trajectory and a ground-truth point-
cloud on a hemisphere as shown Fig. 4. At each pose, we
firstly transform the ground-truth point-cloud with a smooth
deformation field generated by the TPS warp and then compute
the relative measurement (with Gaussian additive noise 0.01)
in the local coordinate frame of the robot pose. We use a single
variable σdeform to control the extent of the used deformation.

We use the as-rigid-as-possible approach in Section VI (by
solving cost (25)) to estimate both the rigid poses and Λ for
all the deformable GPA methods, and report the relative pose
error (RPE) [30] with respect to different σdeform in Fig. 4.

We find that for most of the cases, the pose estimates of
different methods are very close. This can be explained as
follows. In the cost (25), given enough modeling power, the
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Fig. 4: The RPE of estimated rigid poses w.r.t. σdeform by a
20 run Monte-Carlo simulation for each case. The rigid poses
for all deformable GPA methods are solved from cost (25).
We visualize an example of the estimated pose trajectory and
the reference point-cloud M for each methods at σdeform = 1.

term yt(Pt) =
√

ΛSt approximately equals to MΓt, thus the
cost (25) is essentially close to the cost of the rigid GPA.

This result further confirms the point that the proposed Λ
estimation is close to the one in [4] based on the pairwise rigid
Procrustes. However the proposed Λ estimation can better
handle missing correspondences (in Fig. 3) as the solution is
global thus eliminating the bias by using pairwise Procrustes.

D. TOPACS: A Real Computerized Tomography (CT) Dataset

Deformable SLAM has found its application in medical
applications, e.g., computerized tomography (CT) registration.
CT data lack texture information compared to conventional
images, rendering the registration a challenging problem. We
now compare different GPA methods using real CT data,
which we term the TOPACS dataset.

1) The TOPACS dataset: The CT data we use, given in
Fig. 5, contain 6 scans, which are processed by the SURF3D
features [42] resulting in 6 point-clouds (with 20000 points
for each point-cloud). Initial correspondences are found by
matching feature descriptors and then refined by an ICP
algorithm. The global correspondences are found by a graph
matching algorithm, and the ambiguous ones are removed
based on distances. We categorize the correspondences into
four sets C3, C4, C5, C6 by their occurrences across the six
point-clouds. For example, C3 collects the correspondences
occurring in exactly three point-clouds, and others are defined
analogously.

2) Hyper-parameters of DefGPA and KernelGPA: We use
cross-validation to find the suitable tuning-parameters for both
the TPS warps and the kernel model. The result for KernelGPA
is shown in Fig. 2, and that for DefGPA (by the TPS warp) in
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Fig. 5: The TOPACS point-cloud dataset. The point-clouds are
processed from real CT scans using SURF3D features. This
dataset contains 6 point-clouds, with 20000 points for each
point-cloud. There are in total 1320 correspondences classified
into four categories according to their occurrences.
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Fig. 6. For DefGPA, we use µ = 0.01 for both the TPS(5) and
TPS(7) models. For KernelGPA, we use p = 0.2, µ = 0.05.

3) Performance: We use one of the correspondence cate-
gories as the training set and the rest as the test set. In specific,
we use the training set to estimate the GPA transformations,
and then use the estimated transformations to align the points
in the test set to the same coordinate frame. We compute the
point dispersion of the transformed points in the test set, and

training test EUC AFF TPS(3) TPS(5) TPS(7) Kernel

C3 C4C5C6 18.17 14.66 10.65 9.19 8.70 8.60
C4 C3C5C6 18.54 14.48 10.56 9.40 9.02 7.86
C5 C3C4C6 19.13 14.88 11.29 10.21 9.92 9.26
C6 C3C4C5 20.48 16.74 13.39 12.61 12.48 12.14

TABLE II: The performance of each GPA method on the
TOPACS dataset. We report the standard-deviation of the
transformed points in the test set. The smaller the statistics,
the better consistency the registration has.
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Fig. 7: The GPA registration by different transformation mod-
els on the TOPACS dataset. In this example, we use C4 to
estimate the transformation and C5C6 to validate the fitness.
The transformed correspondences in C5C6 are color-coded
dots. The mean of each transformed correspondence is plotted
as a hollow circle with its size encoding the standard-deviation.

report the average standard-deviation in Table II. We provide
a qualitative result Fig. 7 where we use C4 to estimate the
transformation and C5, C6 to validate the fitness.

It is clear that the result improves from the rigid model
(EUC) to DefGPA (AFF, TPS(3), TPS(5) and TPS(7)), and
the proposed KernelGPA (using the kernel model) achieves
the best result both qualitatively and quantitatively.

IX. CONCLUSION

We propose KernelGPA, a novel generalized Procrustes
analysis method based on a kernel method. At its core,
KernelGPA uses a kernel method to define the nonrigid
transformation. Analogous to the previous studied DefGPA
using the LBWs, the proposed KernelGPA can be solved
globally in closed-form to obtain the optimal estimate of the
principal axes of the map. We propose a new method to
estimate the global scale ambiguity Λ and the rigid poses
altogether in a unified optimization framework, which handles
missing correspondences and forms a proper back-end for
deformable SLAM. KernelGPA outperforms DefGPA [4] in
terms of registration performance on various datasets.

Sensor Fusion. It is interesting to explore the possibility
of using the as-rigid-as-possible cost (25) in the sensor fusion
framework. We sketch the general idea as follows for future

researchers. To begin with, we denote cost (25) explicitly as:

φARAP(Rt, tt, Λ) =

n∑
t=1

∥∥∥RtPt + tt1
> −
√

ΛSt

∥∥∥2
F
,

which we have shown to be sufficient to estimate Rt, tt, Λ
from Section VI. In SLAM applications, often additional
sensor information, e.g., IMUs, are available to assist pose
estimation. The IMU measurements can be preintegrated to
form a cost term φIMU [18]. Other sensor measurements can
be used in an analogous manner. In general, we propose the
following cost for sensor fusion:

φFusion(Rt, tt, Λ, . . . ) = φARAP + φIMU + · · · ,

and pose sensor fusion for deformable SLAM as:

min φFusion(Rt, tt, Λ, . . . ).

This problem is well-posed as the cost φARAP constrains
Rt, tt, Λ entirely. The compound cost φFusion can be mini-
mized by standard graph optimization software packages [31].
Other parameters can be initialized based on the initialization
of Rt, tt, Λ proposed in Section VI-B2.

APPENDIX

Let us define Cov(M) = M̄M̄> with M̄ = M− 1
mM11>

being the zero-centered point-cloud of M. Then it can be
verified (by Lemma 2 in [4]) that Cov(M) satisfies:

Cov(RM + t1>) = RCov(M)R>, (31)

for any arbitrary rotation R and translation t. This result
basically states that Cov(M) is purely decided by the rotation
R, and is independent of the translation t. Thus it allows
the possibility to use Cov(M) to fix the rotation gauge. If
M1 = 0, i.e., constraint (10), we have Cov(M) = MM>.

Let us denote the eigenvalue decomposition of Cov(M) as
Cov(M) = MM> = QΛQ>. Then the following is a valid
eigenvalue decomposition of RCov(M)R>:

RCov(M)R> = RMM>R> = RQΛQ>R>, (32)

which has the same eigenvalues as Cov(M) which are the
diagonal elements of Λ. In other words, the eigenvalues of
Cov(M) are preserved under rotations, thus can be used to
fix the rotation gauge. By letting MM> = Λ, i.e., constraint
(11), we fix the rotation to R = Q>.

The constraint M1 = 0 does not cause any bias to the
estimation if the deformation model contains a free translation
[4], i.e., if matrix Q in formulation (20) has an all-ones
eigenvector with eigenvalue 0. This is verified as Q1 = 0 for
the kernel model by Proposition 1. The constraint MM> = Λ
implies an as-rigid-as-possible solution. This is verified by
the implicit eigenvalue decomposition in (32) and the explicit
estimation of Λ by the cost (25).
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