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Abstract—Shared control systems can make complex robot 
teleoperation tasks easier for users. These systems predict the 
user’s goal, determine the motion required for the robot to reach 
that goal, and combine that motion with the user’s input. Goal 
prediction is generally based on the user’s control input (e.g., 
the joystick signal). In this paper, we show that this prediction 
method is especially effective when users follow standard noisily 
optimal behavior models. In tasks with input constraints like 
modal control, however, this effectiveness no longer holds, so 
additional sources for goal prediction can improve assistance. We 
implement a novel shared control system that combines natural 
eye gaze with joystick input to predict people’s goals online, and 
we evaluate our system in a real-world, COVID-safe user study. 
We fnd that modal control reduces the effciency of assistance 
according to our model, and when gaze provides a prediction 
earlier in the task, the system’s performance improves. However, 
gaze on its own is unreliable and assistance using only gaze 
performs poorly. We conclude that control input and natural 
gaze serve different and complementary roles in goal prediction, 
and using them together leads to improved assistance. 

I. INTRODUCTION 

Teleoperation is often used to control robots, but performing 
complex tasks in this way is diffcult. Limited interfaces, 
complex kinematics, and the lack of proprioception turns 
tasks easily performed by hand into exercises in frustration. 
Shared control can make the problem easier. These sys-
tems [12, 12, 22, 30, 34, 35, 47] often work by predicting the 
user’s goal, planning to accomplish that goal, and combining 
the autonomous command with the user input. 

Typically, shared control systems rely on the user’s control 
input, like joystick motion, for goal inference [8, 24, 37, 
44, 46]. When the system observes that the user is working 
towards a particular goal, the system can then assist towards 
that same goal. While this method does not necessarily pro-
vide the earliest predictions [4], user input works well for 
assistance, since accurate predictions arrive more often exactly 
when they are needed. When the user input differentiates 
between goals, the system has enough information to give 
goal-specifc assistance. When all goals require the same 
motion, the user input does not help the system to predict 
the user’s goal, but no goal prediction is actually needed. 
In fact, we can make a more formal claim: when a user 
controlling a shared autonomy system [19] provides control 
input given by p(u|g) ∝ exp(Qg (u)), the expected regret over 
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Fig. 1: A user controls a robot with a joystick to pick up 
a mug, while their eye gaze behavior is captured. Eye gaze 
gives information about the user’s goal earlier than the joystick 
information does, which makes it appealing for incorporation 
into assistive systems. 

user actions stays bounded as the cost of taking a suboptimal 
action increases. We formalize and prove this result in Sec. III. 

However, users often do not follow this optimal behavior. 
Specifcally, the scenario itself can prevent the user from acting 
optimally. Consider a goal that can be split into multiple tasks 
that the robot can perform in parallel, e.g., splitting the goal of 
moving its end-effector to a desired pose into six independent 
dimensions of motion. The above analysis relies on the system 
knowing each task individually. However, the structure of 
the task itself may prevent the user from working on all of 
them: for example, modal control restricts users to giving only 
two directions of end-effector motion at a time. Then, a user 
working on one task and not another will not give suffcient 
information to enable full assistance. 

For successful assistance in these cases, we must consider 
other sources of goal prediction: in this work, we incorporate 
the user’s natural eye gaze. While people manipulate objects, 
they look at their goals before reaching them [14, 21] and look 
forward to next steps in their tasks [29]. These patterns also 
appear during teleoperated manipulation [2, 5, 11] and can be 
used for goal prediction globally through the task, whatever 
its current state [4, 33]. However, gaze is noisy and somewhat 
unreliable, making it a poor choice to use on its own. Thus, it is 
best used to provide the global information that complements 
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predictions based on control input to increase the amount of 
assistance provided. 

In this work, we implement an assistive teleoperation system 
that incorporates goal prediction using both the user’s control 
input and their eye gaze behavior. We use this system to 
evaluate each prediction source in a real-world, COVID-safe 
user study. In the study, participants teleoperated a robot 
manipulator using modal control to pick up one of two 
cups while our system provided assistance. The scenario was 
designed so that the user could not act optimally, so their 
control input was unlikely to yield optimal assistance. During 
each trial, the assistance relied on goal prediction based on 
their joystick input, their gaze behavior, or both. 

We fnd that for this experimental scenario, assistance based 
on joystick input alone is delayed relative to using both 
joystick and gaze, but only when the gaze prediction arrives 
suffciently early. In the cases with early gaze predictions, trials 
fnished more quickly and users supplied less control input. 
Specifcally, early gaze leads to earlier assistance exactly on 
the axes for which the goal positions differ, and the assistance 
is the same otherwise, matching our theoretical analysis. 
However, gaze-based predictions are inherently less reliable, 
as many trials never gave suffcient information for accurate 
goal prediction, and feedback loops led to arbitrarily poor 
performance in some cases. This work explores a fundamental 
limitation of input-based goal prediction for assistance and 
shows that eye gaze provides the global information required 
for systems to provide as much assistance as possible. 

II. RELATED WORK 

A. Assisted Teleoperation 

Assisted teleoperation, in which a system predicts the user’s 
intent, plans autonomously to achieve that intent, and com-
bines its generated command with the user’s direct input, has 
been widely studied [28]. Our work builds most directly on 
Javdani et al. [17, 18], which models assistance as a partially 
observable Markov decision process, with partial observability 
over the user’s goal choice; this model has shown success in 
various iterations and applications [12, 22, 30, 34, 35, 47]. 
This structure enables the system to generate an assistance 
command even with no knowledge of the user’s goal when the 
system can make progress towards all goals simultaneously. 
This work poses goal inference as an inverse reinforcement 
learning problem by assuming a noisily optimal human model, 
which is frequently built upon [8, 24, 37, 44, 46]. To make 
the joystick input more predictive of the goal, Gopinath and 
Argall [13] has the joystick start in a control mode such that 
the user can immediately perform goal-specifc motion. 

An assistive system can combine predictions from different 
sources, such as user input with gaze (proposed by Admoni 
and Srinivasa [1]). Jain and Argall [16] proposed combining 
multiple predictions by assuming each is independent con-
ditioned on the goal, which we use. Structural challenges 
to effective shared autonomy have also been identifed in 
Fontaine and Nikolaidis [10]. 

B. Gaze for Intent Prediction 

During manual manipulation, people look at their targets 
before reaching towards them. Hayhoe [14] reports that 87% 
of reaching movements in a sandwich-making task were 
accompanied by target-directed fxations. These directing fx-
ations [25, 29] indicate the actor’s intention to interact with an 
object. A number of works have used gaze to predict people’s 
goals and tasks [7, 9, 23, 43] during manual manipulation. 

During teleoperation, however, gaze behavior changes. 
While gaze often predicts people’s goals and tasks accu-
rately [4, 11, 33, 42], the introduction of a robot causes 
challenges. The gaze signal can be noisy and diffcult to 
align to the scene [3]. Unlike the largely goal-directed gaze 
during manual manipulation, people often look at the robot 
itself [2, 4, 5, 11, 33]. Worse yet, people can complete tasks 
without ever looking at their goal, especially when repeating 
the task [2, 4]. By analyzing offine data of gaze while oper-
ating a robot, Razin and Feigh [33] fnds that task prediction 
using robot motion is more accurate than gaze alone, and 
adding gaze to the robot motion signal does not improve 
overall prediction performance. The diffculty of using gaze 
motivates our work to understand how to use gaze effectively. 

C. Gaze in the Loop 

Many systems use intentional eye gaze as a control input to 
a robotic manipulation system [6, 26, 27, 36, 40, 41]. Instead, 
we focus on people’s natural gaze behavior, which emerges 
automatically while they execute a task. Huang and Mutlu 
[15] used people’s natural eye gaze while selecting a menu 
item to anticipate their selection and move a serving robot, 
which improved performance. In Stolzenwald and Mayol-
Cuevas [38], participants play a screen-based tile placing game 
using a robotic pointer; using natural eye gaze to predict 
people’s targets so the robot can assist outperformed using 
the prediction to hinder the user, but it did not show any 
improvement over taking no action. 

III. WHEN CONTROL INPUT IS NOT ENOUGH 

Consider a user teleoperating a robot to pick up an object 
(Fig. 1). Grasping tasks like this are diffcult, especially when 
using basic interfaces such as joysticks. To make the task 
easier, shared control [18] predicts the user’s goal among 
a pre-specifed set of goal candidates, plans to achieve the 
goal, and combines this autonomous command with the user 
command. Shared control systems [28] often use the joystick 
input itself to infer the user’s goal. We explore the joystick 
signal and propose criteria for when another signal, such as 
eye gaze, will lead to better assistance. 

A. Joystick-based Prediction and Assistance 

In this section, we summarize the approach for goal predic-
tion and assistance given in Javdani et al. [19]. This method 
uses the user’s control input u to predict their goals, expressed 
as a probability distribution p(G) over a pre-specifed set 
of goal candidates. To do so, it frames goal inference as 
an inverse reinforcement learning problem [17, 20, 44, 45] 



and models the teleoperation problem as a family of Markov 
decision processes (MDPs) with different, pre-specifed cost 

1functions Cg(x, u) for each goal candidate g ∈ G. The 
system then assumes that the user is noisily optimizing the 
cost function corresponding to their true goal. 

First, this method solves the Bellman equation for each goal 
MDP for a goal-specifc action value function Qg (x, u). Then, 
it assumes that the user’s action u at each state x is drawn from 
a distribution given as 

p(u|x, g) ∝ exp(Qg(x, u)). (1) 

Note that this is equivalent to the Boltzmann rational model 
with β = 1. Given a sequence of state-action pairs ξ = 
(x0, u0, · · · , xn, un), the strategy assumes that the user’s ac-
tions are conditionally independent given their goal. Since ξ is 
not a trajectory, as the robot will be acting simultaneously with 
the user, the method treats only the actions ui as observations. 
Using Bayes’ rule, it aggregates a goal prediction over time 
using 

p(ui|g)p(g|u0, · · · , ui−1) 
p(g|u0, · · · , ui) = P . (2) 

p(ui|g ′ )p(g ′|u0, · · · , ui−1)g ′ 

To generate an assistance signal from the goal prediction, 
this method represents the combined robot-human control 
problem as a partially observable Markov decision process 
(POMDP), with the user’s goal a hidden parameter. The 
POMDP augments the system state x with a belief distribution 
over the user’s goal given by p(g) above. The action value 
function Q(x, p, a) depends on the robot state, next action, 
and the belief state. Since solving the POMDP is generally 
computationally prohibitive, it adopts the hindsight optimiza-
tion assumption, which assumes that the uncertainty expressed 
by p(g) will resolve in the next step. From here, we can fnd 
the optimal assistance policy ψ(x, p(g)): X 

ψ(x, p(g)) = argmax p(g)Qg(a). (3) 
a∈A g 

This assumption replaces the overall value function of the 
POMDP with the expectation over the goal probabilities of the 
goal-specifc value functions, and it reuses the goal-specifc 
value functions Qg(u) used in Eqn. 1. (We use a here to 
represent that this action is selected by the robot, as opposed to 
u which is given by the user.) To compute the overall motion, 

∗ ∗ sum a with the user command u directly: aexec = a + u. 

B. Evaluating Prediction Sources 

While accuracy and forecast horizon are useful measures to 
evaluate a prediction of the user’s goal, we want to evaluate the 
assistive system as a whole. Accurate predictions only matter 
when they improve the quality of the assistance provided. 
Whatever its metrics as a prediction, the user’s control input 
is effective for assistance, since the signal is directly tied to 
the generation of the assistance command. 

1Following Javdani et al. [19], the cost function was constant outside a 
radius of the goal and declined linearly to 0 at the goal location. 
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Fig. 2: Diagram of user input (u) and optimal robot motion 
(a ∗) during an example task. The user moves a point robot to 
one of the green stars. At A, user input and optimal motion are 
both to the right. At B, user input is still directly to the right, 
but the optimal motion is diagonally towards the goal. At C, 
both the user input and the optimal motion point towards the 
goal. Early prediction improves task performance only at B. 

To explore this coupling between assistance and goal predic-
tion, we start with an example. A planar robot task is shown 
in Fig. 2. The user must move the point robot from A to 
one of the two goals (green stars). At A, the only way to 
make task progress for either goal is to move to the right. The 
user’s expected input is the same for each goal, so it does not 
yield a goal prediction. However, no prediction is necessary: 
knowledge of the goal would not change the optimal motion. 
At C, the situation is reversed. The optimal motion is to move 
either up or down directly towards the user’s goal. Here, the 
system requires a goal prediction to assist. As the user’s input 
depends on the goal, though, the prediction is available. 

Location B is different. Say the user continues moving 
to the right, which gives no goal information. However, the 
system can do better. If it knew the goal, it could move 
diagonally; without goal knowledge, however, it must wait 
until observing a goal-dependent user input (like at C) before it 
can assist along the vertical direction. Early, independent goal 
prediction only improves assistance at points like B, where 
goal information would change the motion but the user input 
does not provide it. 

To formalize this analysis, consider an assistive system with 
two goal candidates {g1, g2}. 

• Two goals require different motion at x if their optimal 
∗ ∗ ∗robot motion a depends on the goal: a1(x) ≠ a2(x); the 

motion is identical otherwise. 
• Two goals are distinguishable at x if the observed user 

input generally differs based on the goal: u(x|g1) ≠ 
u(x|g2); they are indistinguishable otherwise. 

Identical and different motion are properties of the robot’s 
state, whereas distinguishable and indistinguishable goals are 
determined by the user’s input. When the user is acting 
near-optimally, different motion likely leads to distinguishable 
goals. Next, we formalize this alignment between optimal 
users and effective assistance. 



C. Noisily Optimal Input Bounds Regret 

The above analysis suggests that when users give approx-
imately optimal input, the system will likely receive the 
information needed to provide assistance. If we assume the 
user follows the model given in Eqn. 1, we can evaluate the 
expected performance of the shared autonomy policy given 
in Eqn. 3. We show that as the importance of taking the 
optimal robot action (measured by regret) increases, the user’s 
probability of providing a distinguishing input increases faster, 
such that the overall system has bounded regret. 

For simplicity, assume we only have two goal candidates 
with action value functions Q1 and Q2, and assume without 
loss of generality that the user’s goal is g1. We also assume 
that the set of actions A is fnite and identify actions with 
the same Q(a). At some state x (which we drop for ease of 
notation), let Q∗ be the maximum value of Q1(a) attained at1 

∗ some action a1. If we defne the goal probability from control 
input u as above, the shared autonomy policy ψ(p(g)) is a 
function of u and we write ψ(u). We can then compute the 
expected regret R(ψ(u)) = Q∗ 

1 − Q1(ψ(u)) of the assistance 
policy ψ(u) over the user model. 

∗We can measure the importance of taking a1 over any other 
′action a by letting Rmin represent the minimum regret over 

all alternative actions: 

Rmin = min 
∗ 
R(a). 

a=a1 ̸

We want to understand the behavior of the system as Rmin 
increases. Increasing Rmin can be achieved by changing the 
selected state or the MDP itself. For example, consider an 
MDP with reward function r(x). If we scale that reward 
function, r ′ (x) = λr(x), λ > 0, the value function scales 
similarly, Q ′ (x, a) = λQ(x, a). Then, R ′ min = λRmin, and we 
can then consider the behavior as λ increases. Similar effects 
can also occur by changing x or r(x) in other ways that are 
more complicated to formulate. However the change occurs, 
increasing values of Rmin represent increased importance of 
taking the optimal action. 

We can now determine the expected regret of the assistance 
policy under a user following Eqn. 1. 

Proposition. 
lim Eu[R(ψ(u))] = 0. 

Rmin→∞ 
(4)

We sketch a proof in two parts. First, we show that as 
Rmin → ∞, the assistance action taken when observing the 

∗ ∗optimal action from the user, ψ(a1), becomes a1: 

∗ ∗ lim ψ(a1) = a1. 
Rmin→∞ 

By manipulating Eqn. 3 and collecting terms in p(g), we fnd 
∗ ∗ ′that for ψ(a1) = a1, we must have, for all a ∈ A, 

∗ ∗ ∗ ∗ p(g1|a1)(Q1(a1) − Q1(a ′ )) ≥ p(g2|a1)(Q2(a ′ ) − Q2(a1)). 

The left-hand side is greater than p(g1|a∗1)Rmin which in-
creases as Rmin → ∞, while the right-hand side is nonin-
creasing through p(g ∗

2|a1). Once the importance of taking the 

optimal action exceeds some threshold, the assistance will take 
that optimal action whenever it observes it from the user. 

The expected regret is given byX 
Eu[R(ψ(u))] = R(ψ(u))p(u|g1). 

u 

∗From above, once Rmin is suffciently large, R(ψ(a1)) = 
∗ ∗R(a1) = 0. We can therefore break a out of the sum. If1 

we defne Rmax = maxa R(a) analogously, we have X 
∗ ∗ Eu[R(ψ(u))] = R(ψ(a1))p(a1|g1) + R(ψ(u))p(u|g1) 

∗ X 
u=a1 

= R(ψ(u))p(u|g1) 
∗ u=a1 

∗ ≤ Rmaxp(u = a1|g1). 

̸

̸

̸

Finally, we bound the probability of the user giving an action 
other than the optimal action based on our model of user 
behavior, P 

̸̸
̸

̸

̸

u=a ∗ exp Q1(u)∗ 1p(u = a1|g1) = P 
exp Q∗ 

1 + ∗ exp Q1(u)P u=a1 

∗ exp(−R(u))u=a1 = P 
1 + ∗ exp(−R(u))u=a1 

(|A| − 1) exp(−Rmin)≤ . 
1 + (|A| − 1) exp(−Rmin) 

Putting it all together, 

Rmax
Eu[R(ψ(u))] ≤ .11 + exp(Rmin)|A|−1 

As long as Rmax increases less than exponentially with Rmin, 
the result goes to 0 as Rmin →∞ and the regret is bounded. 
This condition is met by uniformly scaling the reward as 
described earlier. 

As the importance of taking the optimal action increases, 
the chance of the user performing that optimal action under 
the model increases exponentially faster, so the system is more 
likely to receive the information it needs. 

D. Control Input Restrictions Require New Prediction Sources 

We see from the previous result that noisily-optimal users 
are particularly easy to assist using input-based goal pre-
diction. If we remove the assumption of optimality — by 
assuming, e.g., that the user acts randomly, mistakenly, or ad-
versarially — we no longer have guarantees that the assistance 
will behave well. However, there is a large class of problems 
for which the user still acts optimally but the assistance can 
be arbitrarily ineffective: when the user’s action are limited to 
only a subset of the actions that the system can take. 

It is not the user’s suboptimality that limits the 
effectiveness of the system, but the constraints that 
the system itself puts on the user’s behavior. 

One common example of this problem in teleoperation is the 
use of modal control. In this scheme, the robot can control its 



end-effector simultaneously in all directions. However, the user 
has only a 2-D joystick with which to control the robot. The 
user can fully control the robot by cycling through modes with 
the joystick controlling x/y, z/yaw, and pitch/roll in turn. If the 
optimal action does not align with a single control mode, the 
user cannot perform it. The best the user can do is to provide 
input in the single most useful mode. And when the robot 
motion is different but the control input within the optimal 
mode is not distinguishing, assistance does not have enough 
information to be optimal. 

We can return to Fig. 2 to explore this limitation further. 
At B, we observe the user giving indistinguishable motion, 
though the assistance requires different motion per goal. In 
the noisily rational model, this user action occurs at a lower 
probability than a distinguishable input. However, if we add 
the additional restriction that the user can only provide axis-
aligned commands, the user’s input at B is optimal. Even 
with an optimal user, the assistance does not receive enough 
information to provide full assistance. In these situations, the 
system benefts from an alternative, global method for goal 
prediction that is less reliant on the user’s local behavior. While 
an alternative information source will not remove the direct 
restrictions of modal control, it can bypass the limitations in 
goal information forced by the control restriction and improve 
overall system performance. 

IV. GAZE-BASED GOAL PREDICTION 

To provide goal prediction when motion differs but input 
is indistinguishable, we use natural eye gaze. Gaze provides a 
global goal prediction which is less dependent on the state of 
the task, and people’s gaze often anticipates future tasks while 
their actions focus on the current one. 

Systems using intentional gaze behavior typically select 
the goal closest to the user’s gaze location and implicitly 
rely on the user to adjust their gaze to provide accurate 
information [6, 26, 27, 36, 40, 41]. However, natural gaze is 
not so reliable. While gaze relates to the user’s intentions, most 
gaze is directed towards the robot end-effector, and people 
can complete robotic manipulation tasks without ever looking 
at their goals [2, 5, 33]. These complications require more 
complex prediction strategies. 

To predict the user’s goals from their natural gaze, we adapt 
the sequential method given in Aronson et al. [4]. This method 
has two stages of gaze processing: (1) semantic gaze labeling, 
which segments the raw gaze into individual fxations and 
labels each fxation with its corresponding scene keypoint; and 
(2) sequential goal prediction, which uses a pre-trained hidden 
Markov model to yield goal probabilities from this sequence. 

A. Semantic Gaze Labeling 

Raw gaze data is captured as a 90Hz time series of pixel 
locations. This signal is segmented into individual fxations, 
during which the user’s object of focus remains fxed2, using 

2Traditional gaze analysis distinguishes between fxations towards station-
ary objects and smooth pursuits towards moving objects. We only require that 
the object of regard remain the same, so we elide the difference. 

a variant of the I-BMM algorithm [39]. Next, each fxation is 
matched with an object in the scene based on proximity. In 
this task, candidate objects included one for each goal, one 
for each robot joint, and one representing the displayed mode 
indicator. This timed, labeled sequence of fxations is then 
used for goal prediction. 

B. Sequential Goal Prediction 

The sequence is next passed into a pre-trained hidden 
Markov model for processing. We obtain an observation 
probability of each sequence by relabeling each goal candidate 
in turn as the true goal with a function fg , evaluating the HMM 
likelhood, and marginalizing over all goal candidates assuming 
a uniform prior: 

pHMM(fg (ℓ0), · · · , fg (ℓn)) 
p(g|ℓ0, · · · , ℓn) = P . 

g ′ ∈G pHMM(fg ′ (ℓ0), · · · , fg ′ (ℓn)) 

To train the model, we use the HARMONIC data set [32], 
which consists of natural gaze behavior of people performing 
a similar task with a similar robot. While this method differs 
from the method described in Aronson et al. [4], it produces 
comparable results: 57.8% accuracy (vs. 33% chance), 63.2% 
mean probability assigned to the correct goal at the end of the 
trial, and 92.0% median probability assigned to the correct 
goal at the end of the trial. 

C. Combined Prediction 

To combine the joystick and gaze predictions, we follow 
Jain and Argall [16] and assume that each prediction is 
independent conditioned on the goal. Assuming a uniform 
prior, we compute 

p(g|gaze)p(g|joystick) 
p(g|gaze, joystick) = P , 

′∈G p(g ′|gaze)p(g ′|joystick)g 

with p(g|gaze) and p(g|joystick) given as above. Combining 
the probabilities ensures that the assistance command is always 
providing the maximum effort based on the system knowledge, 
so conficting information between the signals leads to full 
movement to a neutral position. 

V. USER STUDY 

We hypothesize that gaze-based prediction will improve 
assistance when the user is unable to make progress on all parts 
of the task simultaneously, but the system could act in parallel 
with suffcient information. In this situation, task metrics will 
improve and goal-specifc assistance will appear earlier than 
without the use of gaze. To evaluate this claim, we design an 
appropriate task and conduct a COVID-safe user study. 

A. Task Development 

As discussed in Sec. III, we expect that only some tasks 
beneft from early prediction. We design a task such that at 
some state typically reached, the assistance required is different 
but the user’s command is indistinguishable. The task is a 6-
dimensional, 3-mode analogue for the example in Fig. 2, in 
which the user can control only one axis at a time. 



(a) (b) (c) 

Fig. 3: Evolution of mug grasping task. First (a), users 
generally reorient the robot so that the gripper is coplanar 
with the grasp points of the cups (b). Next, the user translates 
and rotates the robot to align with their specifc goal (c). If 
the robot knows the user’s goal in stage (a), it can provide 
goal-specifc motion in x and roll. 

Gaze sensor

Webcam

JoystickLaptop

Fig. 4: Study setup that participants prepared at home. 

We start from an object spearing task used in our prior 
assisted manipulation work [5, 17, 32] but modify it into a 
cup grasping task. The robot starts at a neutral position, and 
the user must teleoperate it with modal control to grasp one 
of the two cups. From prior work with this task, we observe 
that users generally start by moving the robot forward (+y) to 
close the distance to all goals and reorienting the end-effector 
to face forward (pitch) before performing goal-specifc motion. 
Therefore, we change the initial robot position to start midway 
between the goals in the x axis, so initial left-right motion is 
different based on the goal. We add an additional, goal-specifc 
constraint along the roll axis by orienting the cup handles 
differently; to grasp a cup, the user must rotate the end-effector 
to align with its handle, another motion that depends on the 
goal. The stages of the new task appear in Fig. 3. While the 
user is moving the robot in y and pitch, the system does not 
get any information about their goal from their control input; 
early, gaze-based goal prediction enables assistance in x and 
roll before the user begins providing goal-specifc input. 

B. User Study 

We conducted a user study in which participants performed 
this cup grasping task. The study was performed within 
subjects and fully counterbalanced, with three conditions 
{joystick, gaze, merged} corresponding to which prediction 
strategy was used for the assistance. 

Because of the COVID-19 pandemic, the user study was 
performed in a hybrid remote-local fashion. The robot and 
a stationary camera were set up in the lab. Each participant 
received a laptop, eye gaze sensor (Tobii Eye Tracker 4C, a 
screen-based tracker), joystick, webcam, and computer para-
phernalia at their home. Participants assembled the equipment 
with remote experimenter supervision. They then connected 
the laptop to the lab via OpenVPN. Using ROS and a custom 
interface, the laptop displayed a live video feed of the robot 
and transmitted the user’s joystick command, gaze data, and 

face video (which was used only for communication). In this 
way, participants controlled the robot without indoor contact. 

C. Procedure 

After flling out a consent form and reporting demographic 
information, participants received an explanation of the task 
while observing an autonomous grasp by the robot. Next, 
participants were instructed on how to control the robot and 
practiced for approximately fve minutes. During this time, 
camera parameters were adjusted to compensate for latency; 
the resulting delay was typically 50 − 70 ms. In addition, the 
fxation segmentation algorithm [39] was trained on their eye 
gaze data. Next, the participant performed four trials with no 
assistance. Finally, the participant performed four trials each 
of the three conditions listed above, fully counterbalanced. 
To accustom participants to the assistance, they performed 
an additional trial in their frst assisted condition which was 
omitted from analysis. Participants flled out a questionnaire 
after each condition and another questionnaire at the end (see 
supplementary material). 

D. Participants 

The study was conducted with 12 participants (6 male, 
6 female, 0 other). Ages of participants were 6 aged 18-
24, 4 aged 25-30, and 2 aged 30-40. For familiarity with 
operating robots, 2 reported lots of familiarity, 6 reported 
some familiarity, and 4 reported no familiarity. Participants 
received $20 compensation for their participation, which took 
approximately 1.5-2 hours including setup and teardown. The 
study was approved by the university IRB offce. Since the 
study required lending materials to participants, recruitment 
was limited to university posting and word of mouth. 

E. Evaluation Metrics 

a) Algorithmic metrics: Within each trial, we compute 
the prediction strength, which is the probability assigned to 
the correct goal during the course of the trial. 

b) Trial metrics: For each trial, we compute the trial 
duration and the active fraction. Trial duration refers how 
long it took the user to complete the task, and active fraction 
refers to what fraction of the trial the joystick command was 
non-zero; i.e., the user was explicitly providing input. Shorter 
trials and trials with less joystick input were considered better. 



0.00 0.25 0.50 0.75 1.00

Progress through trial

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
o
n

st
re

n
gt

h

Gaze

Joystick
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While the median prediction strength over time is similar 
between the two, the distributions are different. The joystick 
prediction for each trial smoothly increases over time. The 
gaze prediction, however, is bimodal, and the median gaze 
prediction strength increases as more trials transition from the 
p ≈ 0.5 to p ≈ 1 at different times. The bimodal nature of 
gaze means that many trials provide accurate goal predictions 
substantially earlier than the joystick method does, despite the 
two signals’ similar median performance. 
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c) Subjective metrics: See supplementary material. 

F. Hypotheses 

H1: Eye gaze is capable of predicting the user’s goal 
earlier than joystick input can. This hypothesis follows the 
observation in Aronson et al. [4] that gaze can give an 
earlier prediction horizon, which underlies our model for 
task improvement. We do not require (or expect) the gaze 
prediction to consistently precede joystick prediction; rather, 
we only need it to do so suffciently often to evaluate its impact 
on the assistance. 

H2: When the assistance system receives a prediction 
from gaze before a distinguishable state, trial metrics will 
improve and goal-specifc assistance will appear earlier. By 
considering only trials in which gaze yielded a prediction and 
analyzing when the prediction was received, we evaluate the 
model of when joystick-based assistance is improved. 

VI. RESULTS 

A. Gaze Gives Early Predictions 

Our model for gaze improving assistance requires that it 
gives earlier predictions than the joystick input does. Figure 5 
shows the prediction strength of gaze and joystick over the 
course of each trial. While gaze and joystick prediction medi-
ans behave similarly, they follow different distributions. Gaze-
based prediction is bimodal, which agrees with Aronson et al. 
[4]. While the joystick prediction strength steadily increases 
throughout each trial, the gaze prediction strength increases 
by shifting probability mass from p = 0.5 to p ≈ 1. Fig. 6 
shows traces of all runs in the gaze and joystick conditions. 
The gaze prediction generally starts at 0.5 and jumps to p ≈ 1 

at some point. This jump occurs at the frst identifed fxation 
on one of the goals. While the effect is not consistent, we do 
fnd that gaze is capable of providing earlier predictions than 
the joystick can, so H1 is supported. 

B. Early Gaze Improves Trial Performance 

Next, we assess how early goal prediction from gaze affects 
trial performance. First, we consider only trials in which 
the gaze gave a prediction at all. We divide this set into 
those that gave an early prediction and those that gave a late 
prediction. Early trials predicted a goal before a threshold time 
Tc. Specifcally, we require: 

∀t, t ≥ Tc : |p(g|data0, · · · , datat) − 0.5| ≥ 0.1. 

Since there are only two goals, either goal can be used 
for this calculation. These criteria mirror the ones given in 
Sec. III: the gaze must give a prediction when the optimal 
motion is different for each goal, but the user’s command is 
still indistinguishable. To choose this threshold, we observe 
that the goal-independent assistance generally fnishes about 
Tc = 20 seconds into the task. The remaining trials that gave 
a prediction were labeled late. Of the 47 trials in the merged 
condition, 21 (45%) were early and 9 (19%) were late. (The 
remaining 17 (37%) did not give a prediction.) We compare 
the early and late gaze prediction strength with the joystick 
prediction strength in Fig. 7 to confrm that this threshold 
generally aligns with when the joystick gives a goal prediction. 

We now consider how the timing of the prediction affects 
trial metrics. Fig. 8 show task metrics for early and late 
trials compared to trials in the joystick condition. A one-way 
ANOVA evaluated on the log of the data shows signifcance 
for both trial duration (F (2, 76) = 6.78, p < 0.002) and 
active fraction (F (2, 76) = 4.32, p < 0.013). Post-hoc analysis 
with the Tukey HSD test shows that early gaze has shorter 
trials than both late gaze (p < 0.006, 95% CI = [0.14, 0.93]) 
and joystick alone (p < 0.008, 95% CI = [0.077, 0.60]). In 
addition, early gaze takes less joystick effort than does joystick 
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alone (p < 0.02, 95% CI = [0.077, 0.93]). The beneft of early 
gaze specifcally relative to both late gaze and joystick show 
that H2 is supported. 

We also consider the magnitude of the assistance over 
time, shown in Fig. 9. As described in Sec. V-A, the task is 
designed such that the optimal motion is different depending 
on the user’s goal along the x axis throughout the task, but 
it is identical along the y axis. We see that the early gaze 
allows earlier assistance in x than late gaze or joystick do, 
since the latter conditions can only assist once the user input 
becomes distinguishing. In contrast, the assistance along the 
y axis is similar for all cases; receiving a goal prediction does 
not change the assistance. This observation aligns with the 
reasoning given in Sec. III. 

VII. STUDY CIRCUMSTANCES 

A. User Gaze is Natural, Not Intentional

This study proposed to evaluate natural gaze for goal
prediction. Unlike during passive data collection, the system 
responded actively to participants’ gaze behavior. Therefore, 
participants may have noticed that the system responded to 
their gaze and chosen to use their gaze as an explicit input. 
To determine if the gaze was indeed natural, participants were 
asked after each condition if they used any particular strategies 
to control the robot. In addition, in the fnal questionnaire, they 
were asked to select trials in which the robot was responsive to 
their gaze. Of the 12 participants, 8 reported that they did not 
notice gaze responsiveness in any system, 2 incorrectly labeled 
the joystick condition as gaze-responsive, 1 identifed the 
merged condition but not the gaze condition, and 1 labeled the 
conditions correctly. Several participants expressed surprise at 
the question and during the subsequent debrief, saying they 
had forgotten about the gaze collection entirely or assumed 
that it was only for passive collection. Therefore, much of the 
gaze captured seems to be natural rather than intentional. 

B. Remote Robot Control

As described in Sec. V-B above, the study was performed
in a hybrid manner, in which a participant at their home 
controlled a robot in the lab, which led to some challenges. 
The primary challenge mentioned by participants was using 
a single, stationary camera to judge the robot’s position. 
Participants often reported struggling with depth perception, 
particularly during the frst, unassisted trials and when aligning 
the robot gripper with the goal handle. When the assistance 
was available, depth perception was less of a problem. Few 
participants reported latency problems; when they did, modi-
fying the video streaming resolution mitigated the problem. In 
addition, using a stationary viewpoint made the gaze detection 
problem signifcantly easier, as it eliminated head motion, 
3D gaze detection, and parallax. Ultimately, the remote study 
seemed to validate our system on a physical robot and using 
eye tracking in the loop despite the restrictions imposed by 
the COVID-19 pandemic. 

VIII. DISCUSSION 

The results above demonstrate a particular example of when 
goal prediction using control input falls short. Even when 
the user acts optimally, the constraints of the task cause 
assistance using only input-based prediction to underperform. 
When another source provides an earlier goal prediction, the 
assistance can help more, earlier. This fnding matches the 
model for the success and limitation of input-based prediction 
discussed in Sec. III. 

In addition, we fnd that natural gaze can provide the 
early goal prediction that the input cannot. However, the gaze 
pipeline used here, and the gaze signal itself, does not pro-
vide the information consistently. Only 21/47 (45%) of trials 
using gaze alongside the joystick gave accurate predictions 
suffciently early to outperform trials with only joystick-based 
assistance. These fndings suggest that an appropriate use of 
gaze-based prediction is as a signal of opportunity. While gaze 
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can improve task performance for certain tasks, its unreliability 
makes it a poor signal on its own. Though better interpretation 
pipelines can improve performance, the lack of any goal-
directed fxations during some trials fundamentally limits its 
predictive ability. 

Alternate strategies for merging the two prediction methods 
may make gaze more useful. Since we fnd that gaze only helps 
when it appears before the joystick prediction does, we can use 
gaze for an initial prediction, but switch to the joystick method 
and entirely omit gaze once distinguishing input becomes 
available. In addition, other tasks that are more sensitive to 
early prediction may show greater improvement using gaze. 
By analyzing the specifc role and of each prediction source, 
we can combine multiple signals in a more nuanced way and 
achieve better overall performance. 

A. Gaze Alone Performs Poorly 

To further explore the usefulness of natural gaze for goal 
prediction, we measure how effective the gaze signal is for 
assistance on its own. We report overall trial metrics in 
Fig. 10 for each condition. A one-way ANOVA evaluated 
on the log of the data shows signifcance only for trial 
duration (F (2, 142) = 12.7, p < 10−5). Post-hoc analysis 
using the Tukey HSD test on the log shows that the gaze 
condition alone takes longer than both the merged condition 
(p = 0.001, 95% CI = [−0.71, −0.25]) and the joystick 
condition (p < 0.002, 95% CI = [−0.59, −0.12]). In addition, 
people generally rated the gaze-alone condition worse than 
either of the others (see supplementary material). 

Gaze suffers because goal-directed gaze does not occur in 
every trial. Familiarity with the scene from previous trials, 
adjusting goal-independent factors such as robot rotation, 
and peripheral vision all contribute to the unreliability of 
distinguishing gaze behavior [2, 5]. In fact, 33/95 (35%) of 
trials exhibited no goal-directed fxations at all. In these cases, 
assistance was provided for the frst part of the trial (when it is 
identical for each goal), but subsequent motion is unassisted. 

Incorrect predictions were even worse than no predictions 
at all. If the gaze prediction selects the incorrect goal early 

in the trial, it was nearly impossible for users to correct it. 
For example, if the user glances at one goal while trying 
to navigate to the other (due to, e.g., wandering attention or 
an error in gaze detection), the gaze-based assistance moves 
the robot directly to that goal. When the user attempts to 
maneuver the robot arm away from that goal, they look at 
the robot end-effector and at the incorrect goal to avoid colli-
sion, reinforcing the incorrect prediction. This self-reinforcing 
behavior was nearly impossible for participants to correct. 
Participants described this condition as “adversarial” and “like 
trying to hold onto a slimy eel while it attempts to wriggle 
away,” and even changed their goals to “accept its whimsy 
ways.” This behavior is analogous to the adversarial conditions 
in Newman et al. [31] and Stolzenwald and Mayol-Cuevas 
[38]. While this issue can arise when a system using control 
input approaches collinear goals [10], when gaze is the only 
prediction source, even maximum input to the other goal does 
not fx the problem. The simplicity of the gaze model, and 
the focus on object identifcation without an understanding 
of object role, illustrates the fragility of this method for goal 
prediction in even a simple task. 

B. Adding Gaze Does Not Provide Overall Improvement 

While adding gaze improves on tasks metrics when the gaze 
provides an early prediction, we consider the overall impact of 
adding gaze. The merged condition, which uses both gaze and 
joystick predictions, does not show improvement over using 
joystick alone in trial metrics (Fig. 10) or subjective metrics 
(see supplementary material). While 45% of merged trials con-
tained early gaze and thus better performance, the effect may 
not have been suffciently large or occur frequently enough to 
make an overall difference. In addition, the downsides of poor 
gaze may have led to frustrating behavior that counteracted 
the beneft gained from early gaze. 

C. Extension to More Complex Tasks 

The gaze-based method can be extended to include addi-
tional goals, with the caveat that gaze discrimination becomes 
noisier as the goals get closer together. For more complex 
tasks, however, gaze prediction will require more sophisti-
cated analysis. In particular, it is diffcult using gaze itself 
to determine the role that any particular object has in a 
task: users can look at one object since it is a goal, and 
another since it is an obstacle. More detailed analysis such as 
stronger task models [9] or analysis of gaze locations within 
an object [2, 21] may help for more general tasks. 

In addition, this work assumes that a grasp is the only pos-
sible interaction with a goal. However, both control input [22] 
and natural gaze [42] can be used to infer information about 
the intended task of the user. We believe that task inference 
may follow similar patterns as goal inference, with task-
specifc control input restricted in time if the interface can only 
support particular interactions and gaze possibly providing 
earlier task information. Extending this work to more varied 
tasks is an important aim of future work. 



Finally, this work assumes that the user’s goal is one of a 
pre-specifed set of objects already known to the assistance 
system. While this assumption is standard [18], it represents 
a signifcant gap between the experimental conditions and a 
full, deployed system. We look forward to expanding the goal 
inference process to more general settings. 

IX. CONCLUSION 

In this work, we explore the strengths and limitations of 
goal prediction based on control input for assisted robot 
teleoperation, and we explore natural gaze as a prediction 
method to mitigate some of those problems. We demonstrate 
that particular task constraints can arbitrarily limit assistance 
even if the user acts optimally. In a user study, we demonstrate 
this suboptimality in joystick-based prediction. Using natural 
eye gaze for the prediction as well does improve task metrics 
when the gaze information comes suffciently early, which it 
does often. However, it does not give this information reliably, 
as people will often never produce goal-distinguishing gaze 
during a trial, and using gaze alone can lead to problematic 
feedback loops. Further work will focus on developing this 
complementarity between gaze-based prediction and joystick-
based prediction, specifcally by exploring nuanced ways to 
combine the signals for effective assistance. 
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