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Abstract—Shared control systems can make complex robot 
teleoperation tasks easier for users. These systems predict the 
user's goal, determine the motion required for the robot to reach 
that goal, and combine that motion with the user's input. Goal 
prediction is generally based on the user's control input (e.g., 
the joystick signal). In this paper, we show that this prediction 
method is especially effective when users follow standard noisily 
optimal behavior models. In tasks with input constraints like 
modal control, however, this effectiveness no longer holds, so 
additional sources for goal prediction can improve assistance. We 
implement a novel shared control system that combines natural 
eye gaze with joystick input to predict people's goals online, and 
we evaluate our system in a real-world, COVID-safe user study. 
We �nd that modal control reduces the ef�ciency of assistance 
according to our model, and when gaze provides a prediction 
earlier in the task, the system's performance improves. However, 
gaze on its own is unreliable and assistance using only gaze 
performs poorly. We conclude that control input and natural 
gaze serve different and complementary roles in goal prediction, 
and using them together leads to improved assistance. 

I. INTRODUCTION 

Teleoperation is often used to control robots, but performing 
complex tasks in this way is diffcult. Limited interfaces, 
complex kinematics, and the lack of proprioception turns 
tasks easily performed by hand into exercises in frustration. 
Shared control can make the problem easier. These sys-
tems [12, 12, 22, 30, 34, 35, 47] often work by predicting the 
user’s goal, planning to accomplish that goal, and combining 
the autonomous command with the user input. 

Typically, shared control systems rely on the user’s control 
input, like joystick motion, for goal inference [8, 24, 37, 
44, 46]. When the system observes that the user is working 
towards a particular goal, the system can then assist towards 
that same goal. While this method does not necessarily pro-
vide the earliest predictions [4], user input works well for 
assistance, since accurate predictions arrive more often exactly 
when they are needed. When the user input differentiates 
between goals, the system has enough information to give 
goal-specifc assistance. When all goals require the same 
motion, the user input does not help the system to predict 
the user’s goal, but no goal prediction is actually needed. 
In fact, we can make a more formal claim: when a user 
controlling a shared autonomy system [19] provides control 
input given by p(u|g) ∝ exp(Qg (u)), the expected regret over 
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Fig. 1: A user controls a robot with a joystick to pick up 
a mug, while their eye gaze behavior is captured. Eye gaze 
gives information about the user’s goal earlier than the joystick 
information does, which makes it appealing for incorporation 
into assistive systems. 

user actions stays bounded as the cost of taking a suboptimal 
action increases. We formalize and prove this result in Sec. III. 

However, users often do not follow this optimal behavior. 
Specifcally, the scenario itself can prevent the user from acting 
optimally. Consider a goal that can be split into multiple tasks 
that the robot can perform in parallel, e.g., splitting the goal of 
moving its end-effector to a desired pose into six independent 
dimensions of motion. The above analysis relies on the system 
knowing each task individually. However, the structure of 
the task itself may prevent the user from working on all of 
them: for example, modal control restricts users to giving only 
two directions of end-effector motion at a time. Then, a user 
working on one task and not another will not give suffcient 
information to enable full assistance. 

For successful assistance in these cases, we must consider 
other sources of goal prediction: in this work, we incorporate 
the user’s natural eye gaze. While people manipulate objects, 
they look at their goals before reaching them [14, 21] and look 
forward to next steps in their tasks [29]. These patterns also 
appear during teleoperated manipulation [2, 5, 11] and can be 
used for goal prediction globally through the task, whatever 
its current state [4, 33]. However, gaze is noisy and somewhat 
unreliable, making it a poor choice to use on its own. Thus, it is 
best used to provide the global information that complements 
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Fig. 3: Evolution of mug grasping task. First (a), users 
generally reorient the robot so that the gripper is coplanar 
with the grasp points of the cups (b). Next, the user translates 
and rotates the robot to align with their specifc goal (c). If 
the robot knows the user’s goal in stage (a), it can provide 
goal-specifc motion in x and roll. 
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Fig. 4: Study setup that participants prepared at home. 

We start from an object spearing task used in our prior 
assisted manipulation work [5, 17, 32] but modify it into a 
cup grasping task. The robot starts at a neutral position, and 
the user must teleoperate it with modal control to grasp one 
of the two cups. From prior work with this task, we observe 
that users generally start by moving the robot forward (+y) to 
close the distance to all goals and reorienting the end-effector 
to face forward (pitch) before performing goal-specifc motion. 
Therefore, we change the initial robot position to start midway 
between the goals in the x axis, so initial left-right motion is 
different based on the goal. We add an additional, goal-specifc 
constraint along the roll axis by orienting the cup handles 
differently; to grasp a cup, the user must rotate the end-effector 
to align with its handle, another motion that depends on the 
goal. The stages of the new task appear in Fig. 3. While the 
user is moving the robot in y and pitch, the system does not 
get any information about their goal from their control input; 
early, gaze-based goal prediction enables assistance in x and 
roll before the user begins providing goal-specifc input. 

B. User Study 

We conducted a user study in which participants performed 
this cup grasping task. The study was performed within 
subjects and fully counterbalanced, with three conditions 
{joystick, gaze, merged} corresponding to which prediction 
strategy was used for the assistance. 

Because of the COVID-19 pandemic, the user study was 
performed in a hybrid remote-local fashion. The robot and 
a stationary camera were set up in the lab. Each participant 
received a laptop, eye gaze sensor (Tobii Eye Tracker 4C, a 
screen-based tracker), joystick, webcam, and computer para-
phernalia at their home. Participants assembled the equipment 
with remote experimenter supervision. They then connected 
the laptop to the lab via OpenVPN. Using ROS and a custom 
interface, the laptop displayed a live video feed of the robot 
and transmitted the user’s joystick command, gaze data, and 

face video (which was used only for communication). In this 
way, participants controlled the robot without indoor contact. 

C. Procedure 

After flling out a consent form and reporting demographic 
information, participants received an explanation of the task 
while observing an autonomous grasp by the robot. Next, 
participants were instructed on how to control the robot and 
practiced for approximately fve minutes. During this time, 
camera parameters were adjusted to compensate for latency; 
the resulting delay was typically 50 − 70 ms. In addition, the 
fxation segmentation algorithm [39] was trained on their eye 
gaze data. Next, the participant performed four trials with no 
assistance. Finally, the participant performed four trials each 
of the three conditions listed above, fully counterbalanced. 
To accustom participants to the assistance, they performed 
an additional trial in their frst assisted condition which was 
omitted from analysis. Participants flled out a questionnaire 
after each condition and another questionnaire at the end (see 
supplementary material). 

D. Participants 

The study was conducted with 12 participants (6 male, 
6 female, 0 other). Ages of participants were 6 aged 18-
24, 4 aged 25-30, and 2 aged 30-40. For familiarity with 
operating robots, 2 reported lots of familiarity, 6 reported 
some familiarity, and 4 reported no familiarity. Participants 
received $20 compensation for their participation, which took 
approximately 1.5-2 hours including setup and teardown. The 
study was approved by the university IRB offce. Since the 
study required lending materials to participants, recruitment 
was limited to university posting and word of mouth. 

E. Evaluation Metrics 

a) Algorithmic metrics: Within each trial, we compute 
the prediction strength, which is the probability assigned to 
the correct goal during the course of the trial. 

b) Trial metrics: For each trial, we compute the trial 
duration and the active fraction. Trial duration refers how 
long it took the user to complete the task, and active fraction 
refers to what fraction of the trial the joystick command was 
non-zero; i.e., the user was explicitly providing input. Shorter 
trials and trials with less joystick input were considered better. 
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Fig. 5: Distributions of prediction strength given by gaze and 
joystick methods over all trials, normalized by trial duration. 
While the median prediction strength over time is similar 
between the two, the distributions are different. The joystick 
prediction for each trial smoothly increases over time. The 
gaze prediction, however, is bimodal, and the median gaze 
prediction strength increases as more trials transition from the 
p ≈ 0.5 to p ≈ 1 at different times. The bimodal nature of 
gaze means that many trials provide accurate goal predictions 
substantially earlier than the joystick method does, despite the 
two signals’ similar median performance. 
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Fig. 6: Prediction strength for each condition over all trials, 
normalized by trial duration. The gaze predictions (left) gen-
erally transition sharply between p ≈ 0.5 (no prediction) and 
p ≈ 1 (confdent, accurate prediction). The joystick predictions 
(right) smoothly increase over time. 

c) Subjective metrics: See supplementary material. 

F. Hypotheses 

H1: Eye gaze is capable of predicting the user's goal 
earlier than joystick input can. This hypothesis follows the 
observation in Aronson et al. [4] that gaze can give an 
earlier prediction horizon, which underlies our model for 
task improvement. We do not require (or expect) the gaze 
prediction to consistently precede joystick prediction; rather, 
we only need it to do so suffciently often to evaluate its impact 
on the assistance. 

H2: When the assistance system receives a prediction 
from gaze before a distinguishable state, trial metrics will 
improve and goal-speci�c assistance will appear earlier. By 
considering only trials in which gaze yielded a prediction and 
analyzing when the prediction was received, we evaluate the 
model of when joystick-based assistance is improved. 

VI. RESULTS 

A. Gaze Gives Early Predictions 

Our model for gaze improving assistance requires that it 
gives earlier predictions than the joystick input does. Figure 5 
shows the prediction strength of gaze and joystick over the 
course of each trial. While gaze and joystick prediction medi-
ans behave similarly, they follow different distributions. Gaze-
based prediction is bimodal, which agrees with Aronson et al. 
[4]. While the joystick prediction strength steadily increases 
throughout each trial, the gaze prediction strength increases 
by shifting probability mass from p = 0.5 to p ≈ 1. Fig. 6 
shows traces of all runs in the gaze and joystick conditions. 
The gaze prediction generally starts at 0.5 and jumps to p ≈ 1 

at some point. This jump occurs at the frst identifed fxation 
on one of the goals. While the effect is not consistent, we do 
fnd that gaze is capable of providing earlier predictions than 
the joystick can, so H1 is supported. 

B. Early Gaze Improves Trial Performance 

Next, we assess how early goal prediction from gaze affects 
trial performance. First, we consider only trials in which 
the gaze gave a prediction at all. We divide this set into 
those that gave an early prediction and those that gave a late 
prediction. Early trials predicted a goal before a threshold time 
Tc. Specifcally, we require: 

∀t, t ≥ Tc : |p(g|data0, · · · , datat) − 0.5| ≥ 0.1. 

Since there are only two goals, either goal can be used 
for this calculation. These criteria mirror the ones given in 
Sec. III: the gaze must give a prediction when the optimal 
motion is different for each goal, but the user’s command is 
still indistinguishable. To choose this threshold, we observe 
that the goal-independent assistance generally fnishes about 
Tc = 20 seconds into the task. The remaining trials that gave 
a prediction were labeled late. Of the 47 trials in the merged 
condition, 21 (45%) were early and 9 (19%) were late. (The 
remaining 17 (37%) did not give a prediction.) We compare 
the early and late gaze prediction strength with the joystick 
prediction strength in Fig. 7 to confrm that this threshold 
generally aligns with when the joystick gives a goal prediction. 

We now consider how the timing of the prediction affects 
trial metrics. Fig. 8 show task metrics for early and late 
trials compared to trials in the joystick condition. A one-way 
ANOVA evaluated on the log of the data shows signifcance 
for both trial duration (F (2, 76) = 6.78, p < 0.002) and 
active fraction (F (2, 76) = 4.32, p < 0.013). Post-hoc analysis 
with the Tukey HSD test shows that early gaze has shorter 
trials than both late gaze (p < 0.006, 95% CI = [0.14, 0.93]) 
and joystick alone (p < 0.008, 95% CI = [0.077, 0.60]). In 
addition, early gaze takes less joystick effort than does joystick 
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Fig. 7: Distributions of prediction 
strength over all trials for early gaze, late 
gaze, and joystick. The x-axis here is not 
normalized by trial time. The dashed line 
at 20s indicates the cutoff time Tc for 
early gaze prediction. 
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Fig. 8: Trial metrics for early gaze, late 
gaze, and joystick. * indicates signif-
cance at p < 0.05 and ** at p < 0.01. 
Early gaze trials are shorter than both 
other conditions and require less input 
than the joystick. 
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Fig. 9: Robot assistance over time in x 
(top) and y (bottom). Early gaze assists 
in x before the Tc = 20 sec. cutoff, 
while late gaze and joystick do not assist 
in this axis until after Tc. In y, the 
assistance is the same for all conditions. 

alone (p < 0.02, 95% CI = [0.077, 0.93]). The beneft of early 
gaze specifcally relative to both late gaze and joystick show 
that H2 is supported. 

We also consider the magnitude of the assistance over 
time, shown in Fig. 9. As described in Sec. V-A, the task is 
designed such that the optimal motion is different depending 
on the user’s goal along the x axis throughout the task, but 
it is identical along the y axis. We see that the early gaze 
allows earlier assistance in x than late gaze or joystick do, 
since the latter conditions can only assist once the user input 
becomes distinguishing. In contrast, the assistance along the 
y axis is similar for all cases; receiving a goal prediction does 
not change the assistance. This observation aligns with the 
reasoning given in Sec. III. 

VII. STUDY CIRCUMSTANCES 

A. User Gaze is Natural, Not Intentional

This study proposed to evaluate natural gaze for goal
prediction. Unlike during passive data collection, the system 
responded actively to participants’ gaze behavior. Therefore, 
participants may have noticed that the system responded to 
their gaze and chosen to use their gaze as an explicit input. 
To determine if the gaze was indeed natural, participants were 
asked after each condition if they used any particular strategies 
to control the robot. In addition, in the fnal questionnaire, they 
were asked to select trials in which the robot was responsive to 
their gaze. Of the 12 participants, 8 reported that they did not 
notice gaze responsiveness in any system, 2 incorrectly labeled 
the joystick condition as gaze-responsive, 1 identifed the 
merged condition but not the gaze condition, and 1 labeled the 
conditions correctly. Several participants expressed surprise at 
the question and during the subsequent debrief, saying they 
had forgotten about the gaze collection entirely or assumed 
that it was only for passive collection. Therefore, much of the 
gaze captured seems to be natural rather than intentional. 

B. Remote Robot Control

As described in Sec. V-B above, the study was performed
in a hybrid manner, in which a participant at their home 
controlled a robot in the lab, which led to some challenges. 
The primary challenge mentioned by participants was using 
a single, stationary camera to judge the robot’s position. 
Participants often reported struggling with depth perception, 
particularly during the frst, unassisted trials and when aligning 
the robot gripper with the goal handle. When the assistance 
was available, depth perception was less of a problem. Few 
participants reported latency problems; when they did, modi-
fying the video streaming resolution mitigated the problem. In 
addition, using a stationary viewpoint made the gaze detection 
problem signifcantly easier, as it eliminated head motion, 
3D gaze detection, and parallax. Ultimately, the remote study 
seemed to validate our system on a physical robot and using 
eye tracking in the loop despite the restrictions imposed by 
the COVID-19 pandemic. 

VIII. DISCUSSION 

The results above demonstrate a particular example of when 
goal prediction using control input falls short. Even when 
the user acts optimally, the constraints of the task cause 
assistance using only input-based prediction to underperform. 
When another source provides an earlier goal prediction, the 
assistance can help more, earlier. This fnding matches the 
model for the success and limitation of input-based prediction 
discussed in Sec. III. 

In addition, we fnd that natural gaze can provide the 
early goal prediction that the input cannot. However, the gaze 
pipeline used here, and the gaze signal itself, does not pro-
vide the information consistently. Only 21/47 (45%) of trials 
using gaze alongside the joystick gave accurate predictions 
suffciently early to outperform trials with only joystick-based 
assistance. These fndings suggest that an appropriate use of 
gaze-based prediction is as a signal of opportunity. While gaze 



Fig. 10: Trial metrics per condition. * indicate signifcance at 
p < 0.05, and ** at p < 0.01. Gaze takes signifcantly longer 
than either condition, and there is no distinction within active 
fraction. 

can improve task performance for certain tasks, its unreliability 
makes it a poor signal on its own. Though better interpretation 
pipelines can improve performance, the lack of any goal-
directed fxations during some trials fundamentally limits its 
predictive ability. 

Alternate strategies for merging the two prediction methods 
may make gaze more useful. Since we fnd that gaze only helps 
when it appears before the joystick prediction does, we can use 
gaze for an initial prediction, but switch to the joystick method 
and entirely omit gaze once distinguishing input becomes 
available. In addition, other tasks that are more sensitive to 
early prediction may show greater improvement using gaze. 
By analyzing the specifc role and of each prediction source, 
we can combine multiple signals in a more nuanced way and 
achieve better overall performance. 

A. Gaze Alone Performs Poorly 

To further explore the usefulness of natural gaze for goal 
prediction, we measure how effective the gaze signal is for 
assistance on its own. We report overall trial metrics in 
Fig. 10 for each condition. A one-way ANOVA evaluated 
on the log of the data shows signifcance only for trial 
duration (F (2, 142) = 12.7, p < 10�5 ). Post-hoc analysis 
using the Tukey HSD test on the log shows that the gaze 
condition alone takes longer than both the merged condition 
(p = 0.001, 95% CI = [−0.71, −0.25]) and the joystick 
condition (p < 0.002, 95% CI = [−0.59, −0.12]). In addition, 
people generally rated the gaze-alone condition worse than 
either of the others (see supplementary material). 

Gaze suffers because goal-directed gaze does not occur in 
every trial. Familiarity with the scene from previous trials, 
adjusting goal-independent factors such as robot rotation, 
and peripheral vision all contribute to the unreliability of 
distinguishing gaze behavior [2, 5]. In fact, 33/95 (35%) of 
trials exhibited no goal-directed fxations at all. In these cases, 
assistance was provided for the frst part of the trial (when it is 
identical for each goal), but subsequent motion is unassisted. 

Incorrect predictions were even worse than no predictions 
at all. If the gaze prediction selects the incorrect goal early 

in the trial, it was nearly impossible for users to correct it. 
For example, if the user glances at one goal while trying 
to navigate to the other (due to, e.g., wandering attention or 
an error in gaze detection), the gaze-based assistance moves 
the robot directly to that goal. When the user attempts to 
maneuver the robot arm away from that goal, they look at 
the robot end-effector and at the incorrect goal to avoid colli-
sion, reinforcing the incorrect prediction. This self-reinforcing 
behavior was nearly impossible for participants to correct. 
Participants described this condition as “adversarial” and “like 
trying to hold onto a slimy eel while it attempts to wriggle 
away,” and even changed their goals to “accept its whimsy 
ways.” This behavior is analogous to the adversarial conditions 
in Newman et al. [31] and Stolzenwald and Mayol-Cuevas 
[38]. While this issue can arise when a system using control 
input approaches collinear goals [10], when gaze is the only 
prediction source, even maximum input to the other goal does 
not fx the problem. The simplicity of the gaze model, and 
the focus on object identifcation without an understanding 
of object role, illustrates the fragility of this method for goal 
prediction in even a simple task. 

B. Adding Gaze Does Not Provide Overall Improvement 

While adding gaze improves on tasks metrics when the gaze 
provides an early prediction, we consider the overall impact of 
adding gaze. The merged condition, which uses both gaze and 
joystick predictions, does not show improvement over using 
joystick alone in trial metrics (Fig. 10) or subjective metrics 
(see supplementary material). While 45% of merged trials con-
tained early gaze and thus better performance, the effect may 
not have been suffciently large or occur frequently enough to 
make an overall difference. In addition, the downsides of poor 
gaze may have led to frustrating behavior that counteracted 
the beneft gained from early gaze. 

C. Extension to More Complex Tasks 

The gaze-based method can be extended to include addi-
tional goals, with the caveat that gaze discrimination becomes 
noisier as the goals get closer together. For more complex 
tasks, however, gaze prediction will require more sophisti-
cated analysis. In particular, it is diffcult using gaze itself 
to determine the role that any particular object has in a 
task: users can look at one object since it is a goal, and 
another since it is an obstacle. More detailed analysis such as 
stronger task models [9] or analysis of gaze locations within 
an object [2, 21] may help for more general tasks. 

In addition, this work assumes that a grasp is the only pos-
sible interaction with a goal. However, both control input [22] 
and natural gaze [42] can be used to infer information about 
the intended task of the user. We believe that task inference 
may follow similar patterns as goal inference, with task-
specifc control input restricted in time if the interface can only 
support particular interactions and gaze possibly providing 
earlier task information. Extending this work to more varied 
tasks is an important aim of future work. 
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