
Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

1

Embodied Multi-Agent Task Planning from
Ambiguous Instruction

Xinzhu Liu∗†, Xinghang Li∗†, Di Guo∗, Sinan Tan∗, Huaping Liu∗‡ and Fuchun Sun∗
∗ Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China

† Equal Contribution.
‡ Corresponding Author. E-mail: hpliu@tsinghua.edu.cn

Abstract—In human-robots collaboration scenarios, a human
would give robots an instruction that is intuitive for the human
himself to accomplish. However, the instruction given to robots is
likely ambiguous for them to understand as some information is
implicit in the instruction. Therefore, it is necessary for the robots
to jointly reason the operation details and perform the embod-
ied multi-agent task planning given the ambiguous instruction.
This problem exhibits significant challenges in both language
understanding and dynamic task planning with the perception
information. In this work, an embodied multi-agent task planning
framework is proposed to utilize external knowledge sources
and dynamically perceived visual information to resolve the
high-level instructions, and dynamically allocate the decomposed
tasks to multiple agents. Furthermore, we utilize the semantic
information to perform environment perception and generate
sub-goals to achieve the navigation motion. This model effectively
bridges the difference between the simulation environment and
the physical environment, thus it can be simultaneously applied
in both simulation and physical scenarios and avoid the notori-
ous sim2real problem. Finally, we build a benchmark dataset
to validate the embodied multi-agent task planning problem,
which includes three types of high-level instructions in which
some target objects are implicit in instructions. We perform
the evaluation experiments on the simulation platform and in
physical scenarios, demonstrating that the proposed model can
achieve promising results for multi-agent collaborative tasks.

I. INTRODUCTION

In real life, a group leader may release an ambiguous in-
struction, which contains his intention but lacks the implemen-
tation details. Nevertheless, intelligent group members may
analyze the instruction to extract the intention and utilize their
knowledge or shared-mental-mind with the leader to execute
the necessary operational details to accomplish the task. Such
a collaboration mechanism is also highly expected for human-
robot collaboration. For example, a human would give robots
an instruction in which the process of completing the task is
obvious to the human himself. However, the overall instruction
given to robots is likely ambiguous for them to understand
as some information is implicit in the instruction, such as
“Put the book and newspaper away”. Although human knows
that the book and newspaper are most likely to be put on the
bookshelf, or the drawer if there is no bookshelf found, robots
may not know where to put the book and newspaper directly
from the instruction, let alone collaborating to complete this
task. Therefore, it is necessary for the robots to jointly reason
the operation details and perform the embodied multi-agent
task planning given the ambiguous instruction (Fig. 1).

Fig. 1. An overview of the embodied multi-agent task planning from ambigu-
ous instruction. Given a high-level instruction, several sub-tasks are generated
and allocated to a group of agents. The agents explore the environment and
implement the sub-tasks. With the change of the visual observation during
the exploration process, the task decomposition and task allocation processes
are also adjusted dynamically.

In the multi-agent task planning scenario, a complex task
can be decomposed in multiple possible ways, and the de-
composed sub-tasks are allocated to multiple agents for the
execution [24]. Therefore, the task planning includes task
decomposition, which focuses on the problem of what to
do [21], task allocation which focuses on the problem of
who does what [3], and task scheduling which focuses on
the problem of how to arrange tasks in time [43]. Among
them, the task decomposition is the problem of decomposing a
complex task into simpler ones, down to the level of actionable
tasks [21, 28]; task allocation is the problem of determining
which robot should execute which task in order to achieve the
overall system goal [3], and task scheduling is the problem of
sequencing tasks for execution [17]. The above problems have
been extensively investigated in diversified works of literature,
most of which transform the given task into a well-defined
optimization problem that requires a clear, structured, and
complete instruction [2, 16]. In practical scenarios, task plan-
ning is highly coupled with the human-robot interaction and
the perception of the environment. It should be dynamically
adjusted due to the vagueness of the interaction and dynamics
of the environment. In this work, we formulate such a prob-
lem as embodied multi-agent task planning from ambiguous
instruction, which exhibits the following key challenges:

1) Ambiguous Instruction Due to the incompleteness and
ambiguity of the given instruction, it is necessary to use



external knowledge sources (such as domain knowledge in a
specific field, knowledge graph, and industry rules) to reason
and clarify the instruction. Based on the clarified instruction,
combined with the characteristics of the robot, the given task
is required to be decomposed into specific sub-tasks that the
robot can perform. For example, the task “Put the book and the
newspaper away” should be clarified to be “Put the book and
the newspaper on the bookshelf” with the visual perceptions
of robots and the knowledge that books and newspapers are
always placed on the bookshelf. Then it should be initially
decomposed into the sub-tasks of “Find the book”, “Find the
newspaper” and “Find the bookshelf”.

2) Dynamic Task Decomposition Since the initial visual
perceptions of multiple robots are limited, the reasoning infor-
mation based on the initial state may not be correct. Therefore,
it is necessary to dynamically adjust the instruction reasoning
and task decomposition with updated visual perceptions during
the continuous execution process of agents. For example, the
task “Put the book and the newspaper away” is clarified to be
“Put the book and the newspaper on the bookshelf” with the
initial visual perceptions. After several steps of exploration,
agents find that there is no bookshelf but a drawer in the
current scene based on their newly obtained visual perceptions.
The book and newspaper can also be put in the drawer.
Then agents need to re-reason the implicit information in
the given instruction and obtain the new clarified instruction
“Put the book and the newspaper in the drawer”. Afterward,
the subsequent decomposition and allocation processes are
performed based on the clarified results.

3) Dynamic Task Allocation Based on the specific decom-
posed sub-tasks, the sub-tasks need to be allocated to multiple
robots considering the robots’ perception and motion abilities
so that each robot is assigned to a corresponding sub-task.
More importantly, in the specific execution process, because
of the ambiguity of instructions and the dynamic nature of the
environment, robots are required to dynamically adjust their
allocated sub-tasks according to the environment perception
information. For example, the three decomposed tasks “Find
the book”, “Find the newspaper” and “Find the bookshelf”
are allocated to Agent 1, Agent 2 and Agent 3 respectively
based on their initial visual environment information. After
several steps, if Agent 1 finds that it is actually closer to the
bookshelf based on its obtained observations, they need to re-
allocate the sub-tasks and Agent 1 would change to perform
“Find the bookshelf”, and Agent 2 would change to “Find the
book” accordingly.

To tackle the above issues, we propose an embodied
multi-agent task planning framework demonstrated in Fig.1
which utilizes external knowledge sources, and dynamically
perceives environment information to parse the high-level
ambiguous instructions, dynamically allocates the decomposed
sub-tasks and completes the distributed navigation tasks. In
this framework, multiple agents are able to leverage the ad-
vantages of their embodiment attribute to dynamically and au-
tomatically adjust the instruction parsing results and efficiently

complete the task. The main contributions are summarized as
follows:

1) Multi-agent embodied task planning framework: A
multi-agent task planning framework is proposed to solve
the multi-agent collaborative mission, which utilizes external
knowledge sources, and dynamically perceived visual infor-
mation to resolve the high-level instructions, and dynamically
allocates the decomposed tasks.

2) Sim&Real learning method for embodied task plan-
ning: A dynamic task allocation model is developed based on
multi-agent collaboration. We utilize the semantic information
to perform the environment perception and generate sub-goals
to achieve navigation motion. This model effectively bridges
the difference between the simulation environment and the
physical environment, thus it can be simultaneously applied in
both simulation and physical scenarios and avoid the notorious
sim2real problem.

3) Evaluation and validation: We build a benchmark
dataset to validate the embodied multi-agent task planning
problem, which includes three types of high-level instructions
in which some target objects are implicit. We perform the eval-
uation experiments both in the AI2-THOR [22] platform and
physical scenarios including Easy and Hard settings, which
demonstrate that the proposed model can achieve promising
results for multi-agent collaborative tasks.

II. RELATED WORK

A. Embodied Multi-Agent Collaboration

Recently, embodied intelligence tasks which integrate per-
ception and action (sometimes language) to perform navigation
[41, 25], exploration [7], object search [39], question answer-
ing [12], remote embodied visual referring expression [29],
task completion with language instructions [4] etc., are pro-
gressively proposed and accelerate the fusion of communities
of machine learning, computer vision and robotics. Most of
them are validated in simulation environment and some real-
world experiments also emerges [1].

On the other hand, in multi-agent collaboration scenar-
ios, the complicated collaborative mission, in which multiple
agents are required to decompose a specific task and execute
the sub-tasks in a distributed manner, has attracted a surge
of attentions in domains of search and rescue [38, 18],
exploration [10, 40], as well as industrial manufacturing [15].
Furthermore, multi-agent systems also witness remarkable
progress in planning, perception, localization, and control [36].

Inspired by the success of the multi-agent system, there have
been some researches on multi-agent embodied tasks in visual
simulation environments. FurnLift [19] and FurnMove [20]
tasks have been proposed to learn a multi-agent decision policy
for two agents to collaboratively lift or move large objects
at the same time. A centralized 3D reconstruction method is
developed to solve the multi-agent question answering task,
in which multiple agents explore the scene jointly to answer
the given question [34]. Modified multi-agent reinforcement
learning and memory-augmented communication module are



TABLE I
COMPARISON BETWEEN OUR WORK AND OTHER RELATED WORK WITH LANGUAGE INSTRUCTION

Work Ambiguous Instructions Task Decomposition Dynamic
Task Allocation

Embodied
Multi-Agent Vision Perception Real-World

Experiments
S2R-VLN [1] % % % % ✓ ✓

REVERIE [29] % % % % ✓ %

HLSM-ALFRED [4] % ✓ % % ✓ %

Virtualhome [28] ✓ ✓ % % % %

VGP-WV [21] ✓ ✓ % % % %

ProScript [30] ✓ ✓ % % % %

LMCR [8] ✓ % % % ✓ ✓

MA-EQA [34] % % % ✓ ✓ %

FurnMove [20] % % % ✓ ✓ %

CollaVN [37] % % % ✓ ✓ %

Ours ✓ ✓ ✓ ✓ ✓ ✓

utilized to solve the multi-agent visual navigation task [37]. A
centralized spatial coordination planner is developed to solve
the multi-agent exploration tasks to improve the exploration
efficiency [40]. In all multi-agent tasks mentioned above, the
task each agent needs to complete is determined without the
process of dynamic decomposition and allocation. In our work,
the given task is required to be dynamically decomposed and
assigned according to the visual perception of each agent.
More importantly, our work provides a promising method to
bridge the difference between the simulation and real-world.

B. Dynamic Task Decomposition and Task Allocation

In terms of task decomposition, the given task is required
to decompose into executable sub-tasks [32, 27].

Particularly, in some tasks with instructions as input, the
language feature is utilized to decompose the task. A com-
monsense instruction reasoning approach is proposed to help
the agent to reason the missing information in the instruction
with the environment observation and complete the instruction
[8]. Pre-trained language models are utilized to decompose
the abstract instruction into sub-tasks [21] or sub-programs
[28] and predict their temporal orders [30] with language
instructions.

In terms of task allocation, multiple tasks need to be
allocated to multiple agents to obtain maximum benefit.
Negotiation-based methods including time-constraint negotia-
tion [23] and game theory-based negotiation [11] are classical
methods to solve the task allocation problem. Auction-based
algorithm [5], consensus-based bundle algorithm [42] as well
as cross-entropy temporal logic optimization [3] have also
been proposed to solve this problem. Besides, dynamic task
allocation extends the general task allocation task to the
dynamic environment setting, and the allocation results need
to be modified with the change of the environment. The
policy search algorithm of reinforcement learning is used to
study the autonomous task sequencing challenge, in which
the agent swarm can sequence tasks whose execution orders
are unknown [17]. Stochastic conflict-based allocation model
[9] and adaptive allocation approach for heterogeneous agents

[13, 14] are proposed to solve the challenge of dynamic
multi-agent task assignment under environment uncertainty
and temporal constraints. All the above methods regard task
allocation as an optimization problem that do not consider
the impact of the visual perception of different agents. Our
work is different from other relevant works that have language
instructions as input, and the comparison between these works
is illustrated in Table I.

III. PROBLEM FORMULATION

In this work, we focus on multiple embodied agents which
aim to decompose the task indicated by the high-level ambigu-
ous instruction into several sub-tasks, collaboratively allocate
sub-tasks and cooperate to complete the entire task with
egocentric visual observations.

Concretely speaking, we consider embodied agents
{D(1), D(2), · · · , D(N)}, where N is the number of agents.
All of the agents share an action space A, from which each
agent can take an action to perform at each time instant. The
state representation of the i-th agent is represented S

(i)
t .

Given a high-level language instruction L, which contains
the main intention of the person but lacks necessary operation
details to ensure the task to be performed, what we hope to
address is to analyze the intention embedding in the instruc-
tion, complete the operation details using external knowledge
source, and perform the task planning for practice execution.
So, we should first transform the original instruction L as
structural representation P , which may contain incomplete or
missing items due to the ambiguity of the instruction L.

Therefore, at each time instant t, we have to resort to
the available external knowledge source K and the agents’
perception information to complete the necessary operation
details and decompose the whole task into sub-tasks Tt =

{T (1)
t , T

(2)
t , · · · , T (K)

t } with temporal ordering constrains,
where T

(k)
t denotes a specific sub-task, and K is the number

of sub-tasks. This procedure can be represented as

Tt = TD(P,St)



where St = {S(1)
t , S

(2)
t , · · · , S(N)

t } are the collected state
information from the agents. Obviously, the above repre-
sentations formulate a perception-aware task decomposition
problem, and it results in a list of sub-tasks that should be
performed. The next step is to allocate them to the embodied
agents. The task allocation results can be represented as
Vt = {V (1)

t , V
(2)
t , · · · , V (N)

t }, which can be derived as

Vt = TA(Tt,St).

Once the goal of each agent at time t is determined, a multi-
agent search strategy can be used to perform as

a
(i)
t = π(i)(S

(i)
t , S

(i−)
t , V

(i)
t ) (1)

for i = 1, 2, · · · , N , where S
(i−)
t is the state information the

other agents which can be transferred via communication.
According to Eq.(1), the main concern in this work is essen-

tially a multi-agent visual semantic search problem. Different
from existing VSN work such as [37, 26], in our work, the goal
of each agent V (i)

t is time-varying, and it is determined from
an ambiguous instruction, which makes this problem more
challenging.

IV. DATASET CONSTRUCTION

To evaluate the embodied task planning in the general
environment is extremely difficult, and a specific scenario
benchmark simulation dataset is desired to validate the pro-
posed methods. In this work, we restrict ourselves to deal
with the ambiguous instructions from which we may infer the
receptacles for some objects. We use such practical scenarios
to construct a benchmark dataset.

There exist lots of simulation environments such as Mat-
terport3D [6] and Habitat [31] simulator. Though existing
datasets in these simulators could provide photo-realistic vi-
sual perception for the navigation, none of them supports
manipulating actions that are required to evaluate the embod-
ied multi-agent task planning from ambiguous instruction. To
develop a benchmark, we resort to ALFRED [33] dataset in
AI2-THOR simulator[22]. ALFRED is a recently developed
benchmark for interpreting grounded instructions for everyday
tasks. Based on ALFRED dataset, reasonable and abstract
high-level instructions can be generated in which the target
object is implicit and need to be inferred. However, ALFRED
does not provide ambiguous instructions, and it cannot be
directly used for multi-agent exploration.

In this work, we use the instructions in ALFRED to ex-
tract necessary information and construct a new benchmark
with AI2-THOR, which supports multi-agent collaboration.
Concretely speaking, we extract five fundamental types of
behaviors heat, cool, clean, put, and throw in the high-level
instructions. In addition, we extract the relationships between
object properties and behaviors in ALFRED, such as bread
can be heated and book cannot be heated or cleaned. We
also preserve the placement constraints in ALFRED between
small objects and receptacles, which imposes the constraints
on whether a certain type of objects could be placed on or

inside another type of receptacle objects. For example, the
reasonable receptacles of book can be bookshelf, desk and
countertop rather than garbage can. This provides solutions
to design reasonable ambiguous instructions.

Then, we use the AI2-THOR environment to design our
tasks. The constructed dataset consists of three types of multi-
agent tasks indicated by high-level instructions, in which the
target objects and operation information may be implicit and
need to be reasoned during the process of task execution. As
illustrated in Fig.2, the three types of tasks are generated
based on the fundamental actions, object properties, and
placement constraints. When generating high-level instructions
for each type of tasks, we select each type of action, preserve
objects meeting object properties constraints for the specific
action, and obtain the most likely reasonable receptacles for
the specific pairs of action and object to form the triple
(action, object, receptacle). In particular, we sort the rea-
sonable receptacles in a descending order according to the
frequency of the triples with the specific action and object
pair appeared in ALFRED instructions. For the fixed action
and object, the candidate triples are utilized to generate the
high-level instructions.

For the task Type I, the high-level instructions contain one
action and one object. Instructions are generated directly based
on obtained triplets as well as several language rules, and
implicit receptacles do not appear explicitly in instructions. For
instance, in the instruction “Heat the bread”, the receptacle
microwave needs to be reasoned.

For the task Type II, the high-level instructions include
one action and two objects that can be executed by that
action. We select two objects with a common receptacle for a
specific action from candidate triples and generate high-level
instructions in a similar way, such as “Heat the tomato and
the bread”.

For the task Type III, the high-level instructions contain two
actions and two objects, in which two actions have a temporal
order, and the object processed by the first action is also the
target object of the second action put. After the first action is
completed, the operated object needs to be placed on another
receptacle, so we filter to get receptacles of the second action
according to the placement constraints. The instructions are
generated using “and” to connect two action instructions and
the receptacle of the first action is implicit. For instance, in
the instruction “Heat the bread and put it on the countertop”,
the bread needs to be put on the counterTop after heated in
the microwave.

It is noted that the receptacles are implicit in all three types
of tasks, and they need to be inferred when the task is pro-
cessed. Meanwhile, all three types of tasks can be decomposed
into sub-tasks that are executed by multiple agents.

To facilitate evaluating the dynamic task allocation strategy,
we utilize the object mask to perform data argumentation. For
the sorted receptacles, we mask out the top three objects in
the scene respectively and select another object of the highest
frequency to form new triples and generate new tasks of the
three types. The correct inferred receptacles are different from



TABLE II
DATASET SPLITS

Train Validation(Unseen) Test(Unseen)
#Tasks 4025 728 926

#Scenes 80 20 20
#Demonstrations 75260 9465 22310

Fig. 2. Three types of instructions in our dataset.

the task without masked objects, but the generated high-level
instructions are the same since the receptacles are implicit
in instructions. When the agent cannot see the top 1 masked
receptacle during the task process, it needs to dynamically
adjust the inferred results to find other possible receptacles.
For example, in the instruction “Put the book away”, the
most likely receptacle Drawer is masked, the agent needs
to re-reason the receptacle to be Cabinet after finding no
Drawer in the scene. Meanwhile, it is noted that to make
the generated dataset more natural and flexible, we extend the
original dataset to a larger one, in which we utilize natural
language processing methods to generate richer daily activity
instructions through synonym generation, syntax analysis, and
sentence pattern conversion.

The expert demonstrations are also generated, which consist
of the task decomposition results, sub-task allocation results,
and actions to be taken at each step for every agent. The
task decomposition results are generated with specific lan-
guage rules and the ground-truth task triples. We consider
the situation where three agents are in the environment, and
the locations of the three agents are initialized under the
constrains that the distance between multiple agents is greater
than 1m and the distance between agents and the same target
object is also greater than 1m, ensuring allocation results
reasonable. The allocation results are generated with the task
decomposition results and agents’ initialization locations. The
navigation actions are generated by the shortest path algorithm
in the sub-goal level with the rotation.

From the above description, we can see that though the
developed benchmark is dependent on AI2-THOR, it is sig-
nificantly different with ALFRED. Finally, We divide the
full dataset, including 120 scenes, into three non-overlapping
splits, namely Train, Validation, and Test. Train split contains
80 scenes, while Validation and Test split contain 20 unseen
scenes each. The corresponding information is shown in Table
II. In addition, more details of the dataset is presented in the
Appendix A and we will release this dataset soon.

V. MODELS

The Embodied Multi-Agent Task planning requires the
agents to reason a set of sub-tasks from the high-level in-
struction and to dynamically correct and re-allocate the sub-
tasks in the exploring process. Considering these challenges,
we propose a hierarchical multi-agent framework to solve the
task. Our framework consists of four essential modules: scene
encoder module, task planning module which concludes the
task decomposition and task allocation, action module and
communication module, as is shown in Fig. 3.

A. Scene Encoder

The scene encoder module firstly takes the RGB and depth
observations as input to obtain the semantic map, and a pre-
trained method [35] is utilized to generate the semantic map
feature vector. The Swin Transformer is used to obtain the
semantic point cloud from the agent’s current RGB and depth
observations. Then we voxelize the semantic point cloud with
a voxel size of 0.125m × 0.125m and a semantic map of
C ×M ×M is obtained, where C indicates the number of
object types, M denotes the length of the semantic map.
We maintain the egocentric semantic map that is within four
meters around the agent, so the size of i-th agent’s semantic
map mp

(i)
t is C × 64× 64 at step t. Specifically, for step t, the

i− th agent’s semantic map mp
(i)
t is generated by merging its

current local semantic map lp
(i)
t and the semantic map mp

(i)
t−1

from previous step.
Then, a scene encoder ScEr is trained with a pre-training

method to generate the feature vector sm(i)
t from the semantic

map mp
(i)
t . The feature vector is supposed to retain the

region information in the semantic map. The scene encoder
is composed of a series of convolution layers. To train the
scene encoder, we give a query to see if a specific type of
object exists in a sub-region of the map. The scene encoder
is trained to answer this query correctly to get the reasonable
semantic map feature vector. With the pre-trained scene en-
coder ScEr, we could have the semantic map feature vectors
as sm

(i)
t = ScEr(Merge(mp

(i)
t−1, lp

(i)
t )), which are the input

for the task planning and action modules.

B. Task Planning

The task planning module is composed of task decompo-
sition part and task allocation part. The task decomposition
part takes the high-level instruction and the semantic map
feature vectors as input for receptacle reasoning and sub-task
sequences generation. The task allocation part allocates the
sub-task sequence to each agent conditioned on its semantic
map information.

1) Task decomposition: Given a high-level instruction, the
task decomposition part firstly extracts the key actions and
objects in the instruction, and the implicit receptacles in the
instruction are predicted based on the semantic map feature
vectors. At step t, we concatenate the encoding of the action
and objects from the instruction to generate the task embed-
ding kt. And then the task embedding kt and the current



Fig. 3. An overview of the hierarchical multi-agent framework for the embodied multi-agent task planning.

semantic map feature vectors sm
(i)
t , i = 1, 2, · · · , N from

all agents are fed into an attention layer and the attention
attdt is obtained. We use a LSTM network to predict the
implicit receptacle as recpt = Fd(LSTM(kt, attdt)), where
Fd denotes the receptacle prediction network. Having the
receptacle recpt, the given incomplete instruction can be
completed. Then, the decomposed sub-tasks as well as their
corresponding temporal order are generated based on the type
of the instruction.

2) Task allocation: The task allocation part predicts the
distance from the agents’ current location to target objects
in the scene given its egocentric semantic map feature vector
sm

(i)
t . At step t, given the embedding of the target objects

ot, we firstly calculate the attention atta
(i)
t of ot on semantic

map vector sm
(i)
t . Then the distance dis

(i)
t from the agent’s

current location to target objects is predicted as follows,

dis
(i)
t = DisP (sm

(i)
t , LSTM(atta

(i)
t ), ot)

dis
(i)
t = {dis(i)t (1), dis

(i)
t (2), · · · , dis(i)t (H)}

(2)

where H is the number of target objects, DisP denotes the
distance predictor which consists of linear layers. After the
distances are predicted, the task allocation part utilizes the
method similar to the bipartite graph matching algorithm to
allocate each sub-task to each agent based on their predicted
distances so that the total length executed when multiple
agents complete the task is the smallest. And the result of task
allocation is denoted as V = Fa(dis

(1)
t , dis

(2)
t , · · · , dis(N)

t ),
where Fa denotes the task allocation model. The task alloca-
tion method requires that each sub-task is assigned to at least
one agent for execution.

It is noted that the task decomposition and task allocation

results can be adjusted dynamically. After each step t, new
visual observations can be obtained after the agents execute
actions based on their assigned sub-tasks. Then with their up-
dated semantic map feature vectors, the task planning module
will also be updated correspondingly.

C. Communication

Having the sub-tasks allocated, the communication module
exchanges the information among agents. The agent can utilize
the message from other agents to facilitate itself for the
following interaction module.

For each agent D(i), i = 1, 2, ..., N , we utilize the triple
(action, object, receptacle) to represent the corresponding
sub-task for each agent, and “blank” is used to denote a vacant
item in the sub-task, such as (find, bread, blank) for the sub-
task “Find the bread”. Then we encode the triple to get the
sub-task embedding s

(i)
t assigned to agent Di at step t. The

sub-task s
(i)
t and the agent’s semantic map feature vector sm(i)

t

are firstly fed into an attention layer and the attention atts
(i)
t

is obtained. The action information of the agent is represented
by the sub-goal. And the sub-goal of the agent in the previous
step t − 1 includes the movement distance in its egocentric
x and y axis ∆x

(i)
t−1 ∆y

(i)
t−1, and the rotation angle ∆rot

(i)
t−1.

We encode the previous sub-goal to get the action embedding
a
(i)
t−1. And then the attention atts

(i)
t , the corresponding sub-

task s
(i)
t , and the sub-goal of the agent in the previous step

a
(i)
t−i are fed into a LSTM fusion layer and the fused feature

f
(i)
t is obtained.

If we view the multi-agents as a sequence of agents, then
the communication between each pair of agents is similar to
self-attention mechanism, which is widely used in transformer-
based methods. Therefore, we use the multi-head attention



layer for the information communication, which takes the
fused feature f

(i)
t from multiple agents as input, and calculates

the attention of each agent’s state information on other agents’
states separately to generate the communication embedding as

(c
(1)
t , c

(2)
t · · · , c(N)

t ) = Fmha(f
(i)
t , f

(2)
t · · · , f (N)

t )

where Fmha denotes the multi-head attention network.
Through attention mechanism, each agent can selectively
utilize the beneficial information from others for the following
action module. Meanwhile, we modify the traditional multi-
head attention structure with the Softmax activation function
to make the communication module more convenient to extend
to the multi-agent system with a larger number of agents.

D. Action Module

The action module leverages the communication informa-
tion, semantic information, sub-task information and previous
sub-goal to predict the next sub-goal for the agent. After
obtaining the sub-goal, the low-level action generation policy
is employed to generate the navigation actions for the agent
to execute in the environment.

We train a sub-goal predictor Fp to generate the next sub-
goal a

(i)
t , which includes the egocentric movement distance

in the x and y axis, namely ∆x
(i)
t and ∆y

(i)
t , the rotation

angle ∆rot
(i)
t , and the probability of “Stop” action stop

(i)
t .

Given f
(i)
t , s

(i)
t , a

(i)
t−1, atts

(i)
t and cit, the next sub-goal

a
(i)
t = Fp(LSTM(f

(i)
t , s

(i)
t , a

(i)
t−1, atts

(i)
t , c

(i)
t ) is generated.

If the agent performs “stop” action, the model judges whether
the target object is found. If it is found, a specific manipulation
action such as “Pick” is performed and the current sub-task
is switched to the next one. If the current sub-task is the last
one, then the entire task is completed.

To navigate to the sub-goal, in the simulation environments,
a low-level action strategy based on the shortest path algorithm
is utilized to make agents navigate from the current sub-goal
to the next sub-goal. In real-world experiments, agents can
navigate from the current location to the predicted sub-goal
based on their own localization, obstacle avoidance, and path
planning system. In this way, we can bridge the difference
between the simulation and real-word to the most.

VI. PERFORMANCE VALIDATION

A. Experiment Settings

To comprehensively evaluate the proposed method, we de-
sign two settings Easy and Hard using the developed dataset.
The main difference lies in the layout of the room.

1) Easy: All of the target objects and agents are in one
single room. In this setting, multiple agents are initialized in
random positions.

2) Hard: The target objects and multiple agents are dis-
tributed in different rooms, and some agents need to go from
one room to another to complete the specified task. This is an
extension to AI2-THOR environment. In this setting, multiple
target objects are distributed in different rooms and multiple
agents are initialized in random rooms.

We train the models only in Easy setting and evaluate the
performance in both Easy and Hard settings to assess the
generalization ability of models.

B. Evaluation Metrics

We utilize two metrics to compare the performance of all
models: Success Rate (SR), Success weight by Path Length
(SPL). If all sub-tasks are completed successfully under the
temporal order constrains, the given task is considered suc-
cessful. SR is the ratio of successful tasks, which is defined
as SR = 1

Ntask

∑Ntask

i=1 Ri where Ri = 1 if the i-th task
is successful, otherwise Ri = 0, and Ntask is the number of
tasks. SPL is denoted as SPL = 1

Ntask

∑Ntask

i=1 Ri
Li

max(Di,Li)
,

where Li denotes the minimum number of steps for multi-
agent to complete the task, and Di is the actual steps.

C. Comparison of Task Planning

We conduct experiments to evaluate the effectiveness of our
task planning module, including task decomposition and task
allocation parts.

In the task decomposition part, we are interested in the
difference between Fixed Task Decomposition (FTD) and Dy-
namic Task Decomposition (DTD). The former provides task
decomposition results directly from the external knowledge
base, while DTD will further dynamically adjust the results
using the perception information. In addition, to show the
performance gap to the upper bound, we also introduce the
Oracle Task Decomposition (Oracle-TD) method, which uses
the ground truth of the task decomposition.

In the task allocation part, we first design two baseline
methods: For Random method, the agents randomly choose
the task allocation for execution. For Init. method, the agents
initially use some simple rules which satisfy the allocation
constrictions to form the allocation results and keep them
unchanged during the running period. We consider two cases
of our proposed task allocation method: Fixed Task Alloca-
tion (FTA) and Dynamic Task Allocation (DTA): The former
calculates the allocation results for only once and the latter
dynamically adjust the allocation using the perception infor-
mation. Finally, we replace the calculation method in Fixed
Task Allocation (FTA) and Dynamic Task Allocation (DTA)
with the ground truth results to form the ceiling methods
Oracle-FTA and Oracle-DTA.

Therefore, there are a total of 3 × 6 = 18 combinations
considering different task decomposition and allocation ways,
and we evaluate them in two types of difficulty setting with
three types of tasks, respectively. The results are shown in
Table III, from which we draw the following conclusions:

1) Dynamic task decomposition significantly performs better
than fixed task decomposition: The reason is that FTD simply
reasons receptacles based on natural language without con-
sidering visual perceptions, while DTD dynamically updates
the decomposition results according to agents’ perception
information. An exception appears in Type III, in which the
receptacles required for inference in the type two action & two
objects are relatively simple, and can be accurately reasoned



TABLE III
COMPARATIVE RESULTS IN TASK PLANNING MODULE

Settings Task Allocation

Task Decomposition
Type I Type II Type III

Oracle-TD FTD DTD Oracle-TD FTD DTD Oracle-TD FTD DTD
SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%)

Easy

Random 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Init 60.3 12.0 14.2 3.1 35.6 7.1 13.7 3.2 2.4 0.8 8.7 2.2 22.0 5.7 22.0 5.7 22.0 5.7
FTA 77.4 15.9 17.3 4.4 44.9 9.7 26.4 6.0 3.8 0.9 14.7 3.6 22.0 6.1 22.0 6.1 22.0 6.1
DTA 78.2 16.7 18.9 5.1 45.1 10.3 29.6 7.3 4.6 1.1 17.3 4.4 27.0 6.8 27.0 6.8 27.0 6.8

Oracle-FTA 78.2 16.2 17.7 4.4 46.5 9.7 31.3 7.5 5.3 1.4 17.3 4.5 31.0 7.2 31.0 7.2 31.0 7.2
Oracle-DTA 81.9 18.2 20.0 5.5 49.0 11.3 35.6 9.6 5.5 1.4 18.8 5.3 35.0 8.9 35.0 8.9 35.0 8.9

Hard

Random 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Init 31.6 19.7 11.5 6.5 13.9 7.6 6.7 2.3 2.6 0.2 4.0 1.3 3.0 0.8 3.0 0.8 3.0 0.8
FTA 46.9 28.2 18.1 11.8 18.6 12.0 10.7 3.7 2.7 0.9 8.0 3.2 4.5 0.8 4.5 0.8 4.5 0.8
DTA 50.2 28.9 19.6 12.5 22.0 13.2 13.3 5.1 5.3 2.3 9.3 3.9 13.4 2.9 13.4 2.9 13.4 2.9

Oracle-FTA 55.0 30.7 20.6 13.9 21.5 13.5 20.0 6.7 9.3 3.2 14.7 5.3 11.9 3.1 11.9 3.1 11.9 3.1
Oracle-DTA 55.5 30.5 21.5 13.4 23.0 13.7 21.3 7.0 12.0 4.0 17.3 5.8 14.9 3.8 14.9 3.8 14.9 3.8

directly based on fixed decomposition. Therefore, the success
rates of different decomposition models in this type of tasks
are the same. We also observe that the oracle decomposition
method Oracle-TD performs best in each type of tasks because
it uses the true decomposition results for the subsequent
process. This reflects that the task decomposition significantly
affect the subsequent task allocation and navigation process,
so it has great influence on the success rate of the whole
tasks. The results also show that there still exists gap between
Oracle-TD and our DTD, which means the embodied task
decomposition is challenging and still has large space for
further research.

2) Dynamic task allocation significantly performs better
than fixed task allocation: It is found that the dynamic alloca-
tion methods always have advantages over the specific fixed
ones. Due to the mutual influence of task allocation and navi-
gation, agents perform navigation based on the allocated sub-
tasks, and agents would obtain new distance prediction results
with the movement and new visual observations. Dynamic
allocation methods can dynamically update the allocation
results based on new perceptions at each step, which is more
reasonable than the fixed strategy.

3) The embodied task planning achieves the best results
except Oracle: Agents have less visual perceptions about the
scene at the beginning of the task, then the receptacle reason-
ing and distance prediction become more accurate with the
continuous interaction and perception with the scene, which
can generate more accurate allocation results and improve
the accuracy of navigation and task completion. The results
demonstrate the importance and effectiveness of the embodied
task planning module.

D. Qualitative Results

We demonstrate the successful sample of multi-agent task
planning in hard settings, which is shown in Fig.4. Agents
perform “Clean the plate and put it on the desk” in different
rooms. At 3-th step, Agent 1 and Agent 3 dynamically adjust

the task allocation results with the updated perceptions of the
scene. After Agent 2 finishing its sub-tasks Clean the plate in
the sink, it switches to Put the plate on the desk, goes into
the bedroom with the help of the effective information from
Agent 3, and finally completes the task successfully. This suc-
cessful sample demonstrates that the embodied dynamic task
allocation is important and effective in the multi-agent task
planning process. Some more success and failure examples
are illustrated in Appendix C (in simulator) and D (in real
scenario).

TABLE IV
COMPARATIVE RESULTS FOR MULTI-AGENT V.S. SINGLE-AGENT

Settings Methods
Type I Type II Type III

SR(%) SPL(%) SR(%) SPL(%) SR(%) SPL(%)

Easy

VSN 13.2 2.9 2.0 0.2 4.0 1.3
VSN-SP 15.0 3.0 4.0 0.5 9.5 2.5

Single-Agent 46.3 10.4 10.1 2.3 22.0 8.7
Multi-Agent w/o Com. 77.8 16.0 29.8 7.0 26.5 6.0

Multi-Agent 78.2 16.2 31.3 7.5 31.0 7.2

Hard

VSN 8.1 3.8 0.0 0.0 0.0 0.0
VSN-SP 11.0 5.7 0.0 0.0 1.5 0.2

Single-Agent 23.9 10.6 1.3 0.8 4.5 1.6
Multi-Agent w/o Com. 52.7 26.4 18.7 8.0 7.5 1.9

Multi-Agent 55.0 30.7 20.0 6.7 11.9 3.1

E. Multi-Agent v.s. Single-Agent

Before closing this section, we present results to show the
advantages of utilizing multi-agent in these scenarios, and
therefore further verify the roles of the embodied task planning
since it is only useful for multi-agent. To this end, we compare
the results of our multi-agent task planning framework in three
types of tasks with the following methods.

For single-agent cases, we consider three methods. The most
typical one is VSN-SP in which scene prior is incorporated into
this model except for the RGB observations and the previous
action as input[39]. This method reduces to VSN if we remove
the scene prior module. Further, we set the number of the agent



Agent 1

Agent 2

Agent 3

find the 
Desk

find the 
Plate

find the 
Sink

update 
task assign

update 
task assign

Instruction: Clean the plate and put it on the desk

sub-task 
finished

find the 
Desk

found the 
Plate

find the 
Sink

find the 
Desk

find the 
Sink

switch 
task

put the plate 
in the sink

found the 
Desk

found the 
Sink

put the plate 
in the sink

sub-task 
finished

sub-task 
finished

found the 
Desk

found the 
Sink

put the plate 
in the sink

sub-task 
finished

sub-task 
finished

sub-task 
finished

clean the plate 
in the sink

found the 
Sink

found the 
Desk

put the plate 
on the desk

found the 
Sink

found the 
Desk

switch 
task

in
fo

rm
 th

e 
ro

om
 

of
 th

e 
de

sk

going to the 
bedroom

put the plate 
on the desk

found the 
Sink

found the 
Desk

put the plate 
on the desk

found the 
Sink

found the 
Desk

go into the 
bedroom

put the plate 
on the desk

found the 
Sink

found the 
Desk

put the plate 
on the desk

Fig. 4. Qualitative results of the Hard setting in the Simulation environment.

Agent 1

Agent 2

Agent 3

find the apple

find the 
microwave

Instruction: bake the apple and put it on the dining table

found the 
bottle

found the 
microwave

find the dining 
table

find the dining 
table

put the apple in 
the microwave

found the 
microwave

find the dining 
table

switch 
task

sub-task 
finished

sub-task 
finished

bake the apple in 
the microwave

found the 
microwave

found the 
dining table

sub-task 
finished

put the apple on 
the dining table

found the 
microwave

found the 
dining table

switch 
task

in
fo

rm
 th

e 
ro

om
 o

f 
th

e 
di

ni
ng

 ta
bl

e

going to the 
living room 

found the 
microwave

found the 
dining table

put the apple on 
the dining table

found the 
microwave

found the 
dining table

put the apple on 
the dining table

found the 
microwave

found the 
dining table

put the apple on 
the dining table

Fig. 6. Qualitative results of the Hard setting in the Real-World scenarios.

Fig. 5. The scenario setup in the Real-World experiments.

to one in our method and form the method Single-Agent which
does not have the task planning and communication module.
The core difference between Single-Agent and VSN-SP, VSN
is that the former uses the sub-goal planning while the latter
ones use the low action generation policy.

For multi-agent cases, we consider two methods. The first
one is named Multi-Agent w/o com, which does not have the
communication module for the agents to exchange information
during the collaborative navigation, and its rest is the same as
our multi-agent framework. The other one Multi-Agent is our
standard and complete version.

To perform a fair comparison between multi-agent and
single-agent baselines, we use the oracle task decomposition
and allocation results, and the SPL is calculated based on the
low-level actions. The comparison results are shown in Table
IV, from which we make the following observations:

1) Even for single-agent case, the proposed method Single-
Agent performs better than VSN and VSN-SP. This illustrates
the roles of the semantic map coding for the visual perception
and sub-goal planning for the action generation.

2) The Multi-Agent method performs much better than

Single-Agent methods. This shows the advantages of the multi-
agent in such a scenario and the roles of the task planning.

3) Type III has higher requirements for collaboration, and
our model has significant improvement compared with the
model without communication. The comparison results be-
tween Multi-Agent and Multi-Agent w/o Com. demonstrate the
effectiveness of the communication module.

VII. REAL-WORLD EXPERIMENTS

As we claim, the proposed learning method reduces the
gap between simulation and real-world by using the semantic
encoder to represent the visual perception and the sub-goal to
facilitates navigation. To verify this point, we establish a real-
world scenario in a practical office building, which is also an
unseen environment but the navigation map is available. This
scenario consists of Room1(30m2), Room2(100m2) and the
corridor(35m long) connecting them. Following similar guide-
lines, we design the Easy(single room) and Hard settings(cross
room), which are shown in Fig.5. We deploy three customized
mobile robots as the embodied agents. Since we use the sub-
goal navigation policy, the developed method can be directly
transferred to the real robots. However, it is noted that our
robotic platform does not have manipulator and therefore we
assume that the object is virtually manipulated when it is found
by the object detector, which is consistent with the setting in
[29].

In Fig.6 we show the results for Hard setting. We also show
the qualitative result of the Easy setting in Appendix D. The
results of both tasks in detail are shown in the attached video.
From the evaluation experiments in the real-world scenes, it
is found that the encoded semantic map and the sub-goal
prediction can help shrink the gap in visual and action domains
between simulation and real-world.



VIII. CONCLUSIONS

In this paper, we establish the benchmark and develop
methods for the challenging problem of embodied multi-
agent task planing from ambiguous instructions. An important
merit of this work is that the multiple agents could jointly
reason the implicit meaning in the ambiguous instruction and
perform the autonomous task planning for navigation. The
proposed method has been validated in the simulation and
real-world environments and the experimental results verify
that the dynamic adjustment for the task decomposition and
task allocation is vital for embodied agents.

Due to the limitation of the simulator, we can only inves-
tigate this problem in restricted scenarios. In the future work,
we would like to extend this work to more complicated real
scenarios and further improve the multi-agent collaboration
capability of dealing with the ambiguous instruction.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Fund for Distinguished Young Scholars under Grant
62025304.

REFERENCES

[1] Peter Anderson, Ayush Shrivastava, Joanne Truong, Ar-
jun Majumdar, Devi Parikh, Dhruv Batra, and Stefan
Lee. Sim-to-real transfer for vision-and-language naviga-
tion. In Conference on Robot Learning, pages 671–681.
PMLR, 2021.

[2] Barbara Arbanas, Antun Ivanovic, Marko Car, Matko
Orsag, Tamara Petrovic, and Stjepan Bogdan. Decentral-
ized planning and control for uav–ugv cooperative teams.
Autonomous Robots, 42(8):1601–1618, 2018.

[3] Christopher Banks, Sean Wilson, Samuel Coogan, and
Magnus Egerstedt. Multi-agent task allocation using
cross-entropy temporal logic optimization. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 7712–7718. IEEE, 2020.

[4] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg,
and Yoav Artzi. A persistent spatial semantic representa-
tion for high-level natural language instruction execution.
arXiv preprint arXiv:2107.05612, 2021.

[5] Martin Braquet and Efstathios Bakolas. Greedy de-
centralized auction-based task allocation for multi-agent
systems. IFAC-PapersOnLine, 54(20):675–680, 2021.

[6] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej
Halber, Matthias Niessner, Manolis Savva, Shuran Song,
Andy Zeng, and Yinda Zhang. Matterport3d: Learning
from rgb-d data in indoor environments. arXiv preprint
arXiv:1709.06158, 2017.

[7] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning
to explore using active neural slam. arXiv preprint
arXiv:2004.05155, 2020.

[8] Haonan Chen, Hao Tan, Alan Kuntz, Mohit Bansal,
and Ron Alterovitz. Enabling robots to understand

incomplete natural language instructions using common-
sense reasoning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 1963–1969.
IEEE, 2020.

[9] Shushman Choudhury, Jayesh K Gupta, Mykel J Kochen-
derfer, Dorsa Sadigh, and Jeannette Bohg. Dynamic
multi-robot task allocation under uncertainty and tempo-
ral constraints. Autonomous Robots, pages 1–17, 2021.

[10] Micah Corah and Nathan Michael. Distributed matroid-
constrained submodular maximization for multi-robot
exploration: Theory and practice. Autonomous Robots,
43(2):485–501, 2019.

[11] Rongxin Cui, Ji Guo, and Bo Gao. Game theory-based
negotiation for multiple robots task allocation. Robotica,
31(6):923–934, 2013.

[12] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan
Lee, Devi Parikh, and Dhruv Batra. Embodied question
answering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–10,
2018.

[13] Yousef Emam, Siddharth Mayya, Gennaro Notomista,
Addison Bohannon, and Magnus Egerstedt. Adaptive
task allocation for heterogeneous multi-robot teams with
evolving and unknown robot capabilities. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 7719–7725. IEEE, 2020.

[14] Yousef Emam, Gennaro Notomista, Paul Glotfelter, and
Magnus Egerstedt. Data-driven adaptive task allocation
for heterogeneous multi-robot teams using robust control
barrier functions. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 9124–9130.
IEEE, 2021.

[15] Catriona Eschke, Mary Katherine Heinrich, Mostafa
Wahby, and Heiko Haman. Self-organized adaptive paths
in multi-robot manufacturing: reconfigurable and pattern-
independent fibre deployment. In 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 4086–4091. IEEE, 2019.

[16] Barbara Arbanas Ferreira, Tamara Petrović, and Stjepan
Bogdan. Distributed mission planning of complex tasks
for heterogeneous multi-robot teams. arXiv preprint
arXiv:2109.10106, 2021.

[17] Lorenzo Garattoni and Mauro Birattari. Autonomous task
sequencing in a robot swarm. Science Robotics, 3(20),
2018.

[18] Chao Huang and Rui Liu. Robot inner attention modeling
for task-adaptive teaming of heterogeneous multi robots.
arXiv preprint arXiv:2006.15482, 2020.

[19] Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Raste-
gari, Svetlana Lazebnik, Ali Farhadi, Alexander G
Schwing, and Aniruddha Kembhavi. Two body problem:
Collaborative visual task completion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6689–6699, 2019.

[20] Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svet-
lana Lazebnik, Aniruddha Kembhavi, and Alexander



Schwing. A cordial sync: Going beyond marginal poli-
cies for multi-agent embodied tasks. In European Con-
ference on Computer Vision, pages 471–490. Springer,
2020.

[21] Peter A Jansen. Visually-grounded planning without
vision: Language models infer detailed plans from high-
level instructions. arXiv preprint arXiv:2009.14259,
2020.

[22] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon,
Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An
interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474, 2017.

[23] Yan Kong, Minjie Zhang, and Dayong Ye. A negotiation-
based method for task allocation with time constraints in
open grid environments. Concurrency and Computation:
Practice and Experience, 27(3):735–761, 2015.

[24] G Ayorkor Korsah, Anthony Stentz, and M Bernardine
Dias. A comprehensive taxonomy for multi-robot task al-
location. The International Journal of Robotics Research,
32(12):1495–1512, 2013.

[25] Jeffrey L Krichmar, Tiffany Hwu, Xinyun Zou, and Todd
Hylton. Advantage of prediction and mental imagery for
goal-directed behaviour in agents and robots. Cognitive
Computation and Systems, 1(1):12–19, 2019.

[26] Xinzhu Liu, Di Guo, Huaping Liu, and Fuchun Sun.
Multi-agent embodied visual semantic navigation with
scene prior knowledge. IEEE Robotics and Automa-
tion Letters, pages 1–1, 2022. doi: 10.1109/LRA.2022.
3145964.

[27] James Motes, Read Sandström, Hannah Lee, Shawna
Thomas, and Nancy M Amato. Multi-robot task and mo-
tion planning with subtask dependencies. IEEE Robotics
and Automation Letters, 5(2):3338–3345, 2020.

[28] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu
Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:
Simulating household activities via programs. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8494–8502, 2018.

[29] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton van den
Hengel. Reverie: Remote embodied visual referring
expression in real indoor environments. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9982–9991, 2020.

[30] Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le
Bras, Niket Tandon, Peter Clark, and Yejin Choi. pro-
script: Partially ordered scripts generation via pre-trained
language models. arXiv preprint arXiv:2104.08251,
2021.

[31] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat:
A platform for embodied ai research. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 9339–9347, 2019.

[32] Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shi-
mon Whiteson, and Ingmar Posner. Taco: Learning task
decomposition via temporal alignment for control. In
International Conference on Machine Learning, pages
4654–4663. PMLR, 2018.

[33] Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for
interpreting grounded instructions for everyday tasks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10740–10749,
2020.

[34] Sinan Tan, Weilai Xiang, Huaping Liu, Di Guo, and
Fuchun Sun. Multi-agent embodied question answering
in interactive environments. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIII 16, pages 663–678.
Springer, 2020.

[35] Sinan Tan, Mengmeng Ge, Di Guo, Huaping Liu, and
Fuchun Sun. Self-supervised 3d semantic representa-
tion learning for vision-and-language navigation. arXiv
preprint arXiv:2201.10788, 2022.

[36] Hoa Van Nguyen, Hamid Rezatofighi, Ba-Ngu Vo, and
Damith C Ranasinghe. Multi-objective multi-agent plan-
ning for jointly discovering and tracking mobile objects.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7227–7235, 2020.

[37] Haiyang Wang, Wenguan Wang, Xizhou Zhu, Jifeng Dai,
and Liwei Wang. Collaborative visual navigation. arXiv
preprint arXiv:2107.01151, 2021.

[38] Hongling Wang, Chengjin Zhang, Yong Song, and Bao
Pang. Master-followed multiple robots cooperation slam
adapted to search and rescue environment. International
Journal of Control, Automation and Systems, 16(6):
2593–2608, 2018.

[39] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta,
and Roozbeh Mottaghi. Visual semantic navigation using
scene priors. arXiv preprint arXiv:1810.06543, 2018.

[40] Chao Yu, Xinyi Yang, Jiaxuan Gao, Huazhong Yang,
Yu Wang, and Yi Wu. Learning efficient multi-
agent cooperative visual exploration. arXiv preprint
arXiv:2110.05734, 2021.

[41] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep
reinforcement learning. In 2017 IEEE international
conference on robotics and automation (ICRA), pages
3357–3364. IEEE, 2017.

[42] Farouq Zitouni, Saad Harous, and Ramdane Maamri. A
distributed approach to the multi-robot task allocation
problem using the consensus-based bundle algorithm and
ant colony system. IEEE Access, 8:27479–27494, 2020.

[43] Robert Zlot and Anthony Stentz. Market-based multi-
robot coordination for complex tasks. The International
Journal of Robotics Research, 25(1):73–101, 2006.



Appendix

A Dataset Details

The detailed information about the three types of tasks in the constructed dataset is shown in Fig.
A.1. For each type of tasks, We show the different action types, their instructions and sub-tasks
tuples information.

Figure A.1: The detailed information about the constructed dataset of three types of tasks.

B Training Methodology

Since both the task planning module and the action module take semantic map feature vector as
input, and the training process of the two modules is relatively independent, we train this two module



separately. We utilize the supervised learning algorithm to train the task planning module and the
imitation learning algorithm to train the action model.

The task decomposition part in the task planning module predicts the implicit receptacles, and the
task allocation part predicts the distance between the agent to the target objects in the scene. The
ground truth of the implicit receptacles can be obtained from the true task triple. The true distance
between the agent’s location and all objects can be obtained from the AI2-THOR simulator. During
the training process, the task allocation part is trained to predict the distance from the agent’s location
to all objects. During the inference process, the agents only predict the distance to target objects.
The loss function of the task planning module is defined as follows,

Losstask = αLossrecep + βLossdis,

Lossdis = Lossseen + λLossunseen
(1)

where Lossrecep denotes the entropy loss between the predicted receptacles and the true receptacles,
Lossdis denotes the sum of MSE loss of distance to objects. Lossdis contains the regression loss
of the predicted distance to seen objects Lossseen and the regression loss of the distance to unseen
objects Lossunseen. α, β and λ are the hyper-parameters to control the training process. In our
implementation, we set α and β to 1 and λ to 0.1.

The action module task predicts the next sub-goal specified by the grid of 0.25 meters given the
specific sub-task embedding and semantic map feature vectors. The sub-goal is at most 1 meter from
the original position on the egocentric x and y axes, that is, four grids in the simulator. Meanwhile,
each sub-goal also contains the rotation angle, which is specified in units of 90 degrees, that is,
the rotation in the new sub-goal can take the value of 0, 90, 180, 270. The sub-goal navigation
demonstrations are generated by the heuristic shortest path algorithm. For each sub-task, we find
the viewpoints in which the agent can interact with the target object and select several viewpoints
with the largest bounding box area in the RGB observations as the target location. Then we generate
the shortest path in the sub-goal level. Since the movement in egocentric x and y axes as well as
rotation degrees are relatively independent during navigation, we predict the number of moving grids
in the two directions respectively and the rotation angle. We also predict the probability of “Stop"
action to monitor the progress of the sub-task. The loss function of the action module is defined as
follows,

Losssub−goal = γLossxloc
+ δLossyloc

+ θLossrot + ϕLossstop (2)

where Lossxloc
denotes the cross entropy loss between the number of predicted sub-goal movement

grids in egocentric x axis direction and that in demonstrations, Lossyloc
denotes the cross entropy

loss between the number of predicted sub-goal movement grids in egocentric y axis and that in
demonstrations, Lossrot indicates the cross entropy loss between the predicted rotation angle and
that in demonstrations, Lossstop denotes the binary of cross entropy loss of the binary classification
problem whether the agent stops or not. γ, δ, θ and ϕ are the hyper-parameters to control the training
process. In our implementation, we set γ, δ, θ and ϕ to 1.

C Qualitative Results in Simulator

We show the successful sample of the Easy setting in the simulation environment in Fig. C.1.Agents
execute the setting “Put the cut away" in the same room. The implicit receptacle is reasoned to be
“cabinet", and decomposed sub-tasks are allocated to three agents based on their visual perception
at the first step. Then at 3-rd step, Agent 1 and Agent 3 change their sub-tasks because of their
newly obtained visual perceptions which can help them predict the distance to target objects more
accurately. At 5-th step, after Agent 2 finishes its sub-task, it switches the sub-task and completes
the whole task with the help of communication messages from Agent 1 and Agent 3.



find the 
Cabinet

find the 
Cup

find the 
Cup

find the 
Cabinet

find the 
Cup

find the 
Cup

find the 
Cabinet

find the 
Cup

find the 
Cup

find the 
Cabinet

find the 
Cup

find the 
Cup

found the 
Cabinet

found the 
cup

find the 
cup

found the 
Cabinet

put the cup in 
the cabinet

found the 
Cabinet

put the cup in 
the cabinet

put the cup in 
the cabinet

put the cup in 
the cabinet

update 
task assign

switch 
task

switch 
task

Instruction: Put the cup away

sub-task 
finished

sub-task 
finished

sub-task 
finished

update 
task assign

Agent 1

Agent 2

Agent 3

Figure C.1: Qualitative results of the Easy setting in the simulation.

Instruction: clean the tomato and put it on the coffee table

found the 
Sink

found the 
Tomato

put the tomato 
in the sink

put the plate 
on the desk

put the tomato on 
the coffee table

found the 
Desk

find the 
CoffeeTable

find the 
Sink

find the 
Tomato

found the 
CoffeeTable

sub-task 
finished

find the 
Sink

find the 
Tomato

sub-task 
finished

found the 
CoffeeTable

find the 
Tomato

find the 
Tomato

found the 
CoffeeTable

found the 
Sink

find the 
Tomato

max attempts 
reached

going to the 
kitchen

found the 
CoffeeTable

found the 
Sink

going to the 
kitchen

find the 
Tomato

found the 
CoffeeTable

found the 
Sink

found the 
CoffeeTable

found the 
Sink

found the 
Sink

found the 
CoffeeTable

switch 
task

found the 
Sink

found the 
CoffeeTable

switch 
task

in
fo

rm
 th

e 
ro

om
 o

f 
th

e 
co

ffe
e 

ta
bl

e

put the tomato 
in the sink

Agent 1

Agent 2

Agent 3

Figure C.2: The failure case in the simulation environment.

Agent 1

Agent 2

Agent 3

find the bottle

find the fridge

Instruction: freeze the bottle of water

find the bottle

find the fridge

find the bottle find the bottle

find the bottle

found the 
fridge

find the bottle

find the bottle

find the fridge

find the bottle

find the bottle

find the fridge

found the 
bottle

sub-task 
finished

find the bottle

find the fridge

put the bottle 
in the fridge

find the bottle

find the fridge

put the bottle 
in the fridge

sub-task 
finished

switch 
task

find the bottle

find the fridge

put the bottle 
in the fridge

sub-task 
finished

Figure D.1: Qualitative results of the Easy setting in the real-world scenarios.

In Fig. C.2, we show a failure case, in which the instruction is “Clean the tomato and put it on the
coffee table". Agent 1 and Agent 2 are in the living room and Agent 3 is in the kitchen. The optimal
task allocation result is that Agent 3 washes the tomato in the sink and brings it to the living room,
but in the inference process, Agent 3 chooses to find the sink at the beginning resulting in its early
stop. The sub-task assigned to Agent 1 is “find the tomato", and only when it reaches the maximum
step limit in living room can it realize to go to the kitchen to find the tomato because of the lack of
perception information in the kitchen causing by the early stop of Agent 3. Agent 1 needs to wash
the tomato in the kitchen and then back to living room to put it on the coffee table, but it exceeds the
maximum task steps, resulting in the task failure. The cases indicate that in Hard setting, the task
allocation results at the first step are important for the task completion. If the allocation is reasonable
at first, the overall task is more likely to be completed in fewer steps.

D Qualitative Results in Real World

We show the qualitative performance in the Easy setting in the real-world scenario in the same room
in Fig. D.1. Agents perform the task “Freeze the bottle of water". Agent 3 finds the bottle of water,
then finds the fridge with the help of communication information from Agent 1 and Agent 2, and
finally completes the task successfully.


	Introduction
	Related Work
	Embodied Multi-Agent Collaboration
	Dynamic Task Decomposition and Task Allocation

	Problem Formulation
	Dataset Construction
	Models
	Scene Encoder
	Task Planning
	Task decomposition
	Task allocation

	Communication
	Action Module

	Performance Validation
	Experiment Settings
	Easy
	Hard

	Evaluation Metrics
	Comparison of Task Planning
	Qualitative Results
	Multi-Agent v.s. Single-Agent

	Real-World Experiments
	Conclusions

