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Abstract—There is a growing need for computational tools
to automatically design and verify autonomous systems, espe-
cially complex robotic systems involving perception, planning,
control, and hardware in the autonomy stack. Differentiable
programming has recently emerged as powerful tool for modeling
and optimization. However, very few studies have been done
to understand how differentiable programming can be used for
robust, certifiable end-to-end design optimization. In this paper,
we fill this gap by combining differentiable programming for
robot design optimization with a novel statistical framework for
certifying the robustness of optimized designs. Our framework
can conduct end-to-end optimization and robustness certification
for robotics systems, enabling simultaneous optimization of nav-
igation, perception, planning, control, and hardware subsystems.

Using simulation and hardware experiments, we show how our
tool can be used to solve practical problems in robotics. First, we
optimize sensor placements for robot navigation (a design with
5 subsystems and 6 tunable parameters) in under 5 minutes to
achieve an 8.4x performance improvement compared to the initial
design. Second, we solve a multi-agent collaborative manipulation
task (3 subsystems and 454 parameters) in under an hour to
achieve a 44% performance improvement over the initial design.
We find that differentiable programming enables much faster
(32% and 20x, respectively for each example) optimization than
approximate gradient methods. We certify the robustness of each
design and successfully deploy the optimized designs in hardware.
An open-source implementation is available at https://github.com/
MIT-REALM/architect.

I. INTRODUCTION

To design complex systems, engineers in many fields use
computer-aided tools to boost their productivity. Mechanical
engineers can use a suite of 3D CAD (computer-aided design)
and FEA (finite-element analysis) tools to design structures
and understand their performance. Likewise, electrical engi-
neers use electronic design automation tools, including hard-
ware description languages like Verilog, to design and analyze
large-scale, reliable, and yet highly complex integrated cir-
cuits. Sadly, when it comes to designing autonomous systems
and robots, engineers often take an ad-hoc approach, relying
heavily on experience and tedious parameter tuning.
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Fig. 1: An overview of our framework for robot design opti-
mization and certification. Differentiable programming allows
the user to flexibly specify a robot design problem, which
can be efficiently optimized using exact gradients and verified
using an extreme value statistical analysis.

Two factors have made it difficult to develop automated
design tools for robotics. The first is complexity: most robots
are composed of many interacting subsystems. Although some
tools may aid in designing certain subsystems (e.g. Simulink
for controllers, SolidWorks or CATIA for hardware, custom
software for training perception systems), these tools cover
only a small part of the overall robotics design problem, which
includes sensing, actuation, perception, navigation, control,
and decision-making subsystems. In addition to being inter-
connected, these subsystems often have a large number of
parameters that require tuning to achieve good performance
(neural network-based perception is an extreme example of
this trend). Moreover, since few robotic systems are exactly
alike, an effective design tool must allow the user to select an
appropriate level of abstraction for the problem at hand. As a
result, there is a need for flexible computational tools that can
help designers optimize complex robotic systems.

The second difficulty is uncertainty. Robots operate in dy-
namic environments that cannot be fully specified a priori, and
nonlinear interactions between the robot and its environment
can make this uncertainty difficult to quantify. Nevertheless,
we must account for this uncertainty during the design process
and ensure that our designs perform robustly. The nature of
this uncertainty can vary from problem to problem, reiterating
the requirement that an automated design tool must be flexible
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enough to adapt to different robot design problems.
To be successful, an automated robot design tool must

address these two challenges (complexity and uncertainty).
In addition, just as mechanical and electrical engineers use
automated tools to both design and verify their designs, a robot
design tool must enable its user to both design autonomous
systems and certify the robustness of those designs. In this
paper, we address these challenges by combining differentiable
programming for design optimization with a novel statistical
approach to design certification. In short:

1) We present a robot design optimization framework that
is flexible (using differentiable programming to model
complex systems) and robust (avoiding “brittle” optima).

2) We develop a novel statistical approach to certifying a
design’s robustness to environmental uncertainty.

3) We validate our approach with experiments in simulation
and hardware to show how our methods can be used to
solve practical robot design problems.

Our goal is to develop a general-purpose robot design
optimization tool that can be applied to a range of robot design
problems with multiple subsystems. This goal is in contrast
with other approaches that are restricted either to specific
applications [1, 2, 3, 4, 5, 6] or subsystems [7]. To accom-
plish this goal, we make two novel contributions. The first
is algorithmic: our approach builds on recent developments
in programming languages (i.e. automatic differentiation) to
provide the flexibility to model complex systems while still al-
lowing fast gradient-based optimization. The second concerns
certification: to ensure that our optimized designs are robust
in the face of uncertainty, we pair design optimization with a
novel statistical approach to robustness analysis.

Our experiments show that our methods can (in our first
case study) optimize a robotic system with five subsystems
and six design variables in under five minutes, achieving an
8.4x performance improvement over the initial design. In our
second case study, we optimize a system with three subsystems
and 454 design variables in under an hour, achieving a 44%
performance improvement over the initial design. Our use
of differentiable programming allows us to complete this
optimization 32% and 20x faster, respectively in each example,
compared to approximate gradient methods. Both of these
designs are certified using a statistical robustness analysis and
successfully deployed in hardware. An open-source implemen-
tation of our framework, including repeatable code examples,
is available at https://github.com/MIT-REALM/architect. Our
hope is that this prototype implementation will provide the
foundation for a fully-featured, easy-to-use design tool for
practicing robotics engineers.

II. RELATED WORK

1) Design optimization for robotics: Most existing works
on design optimization for robotics focus on a particular
application, such as simple walking robots [1], quadrotors [2],
and soft robots [3, 4, 5]. Other works employ optimization to
design specific subsystems, such as controllers [7] or motion
plans [8]. In contrast, the purpose of this work is to develop

a general-purpose robot design optimization tool that can be
applied not only to a range of robot design problems but also
to optimize the design of multiple subsystems simultaneously.
This goal is related to that of a large family of multi-
disciplinary design optimization (MDO) methods in aerospace
engineering [9]. As discussed above, our approach differs
from MDO in its use of differentiable programming as a
flexible modeling tool and our novel statistical approach to
robustness analysis. We review the related work for automatic
differentiation and robustness analysis in the next two sections.

2) Programming languages for design optimization: When
it comes to managing complexity in a general-purpose design
framework, programming languages are a natural tool. They
allow users (i.e. programmers) to define precisely which
abstractions are appropriate for any given application (e.g. by
defining appropriate class hierarchies and function interfaces)
without sacrificing generality. To take advantage of this ex-
pressivity, we can view engineering designs as programs that
define the behavior of the system given suitable choices for
design structure and parameters. We can then use automatic
differentiation to derive gradients connecting these parameters
to the system’s behavior and optimize accordingly. This view
is inspired by recent work in 3D design optimization [10],
aircraft design [11], and machine learning [12, 13].

In recent years, the robotics community has also developed
special-purpose differentiable simulators for robotic systems,
particularly those involving rigid body contact dynamics [14,
15, 16, 17]. These simulators have been used to solve system
identification and controller design tasks, but they do not
represent a general-purpose framework, as gradients are often
derived by hand and the simulators are not expressive enough
to model full-stack robotic systems (e.g. with perception
and navigation capabilities). We take inspiration from these
methods in our case studies, where we implement a simple
differentiable contact simulator in our second case study.

3) Formal methods for robustness analysis: Safety and
robustness are critical concerns for any robotic system. When
it comes to low-level control, there is a rich history of
reachability [18] and stability [19, 20] analysis tools that can
be used to answer questions of safety and robustness for the
control subsystem. Other works apply reachability analysis
at the system level using black-box tools [21]. This work
builds on this history by incorporating formal analysis into
a design-optimize-analyze loop to provide rapid feedback on
robustness as part of the design process. In particular, we
develop a novel statistical method for quantifying the worst-
case performance and sensitivity of an optimized design to
external perturbations.

III. PRELIMINARIES AND ASSUMPTIONS

Key to the design of robotic systems is the tension between
the factors a designer can control and those she cannot. For
instance, a designer might be able to choose the locations of
sensors and tune controller gains, but she cannot choose the
sensor noise or disturbances (e.g. wind) encountered during
operation. Robot design is therefore the process of choosing
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Fig. 2: A glass-box model of a generic robotic system. Design
optimization involves finding a set of design parameters so
that the simulated cost is minimized, while robustness analysis
involves quantifying how changes in the exogenous parameters
affect the simulated cost.

feasible values for the controllable factors (here referred to as
design parameters) that achieve good performance despite the
influence of uncontrollable factors (exogenous parameters).

Of course, this is a deliberately narrow view of engineer-
ing design, since it focuses on parameter optimization and
ignores important steps like problem formulation and system
architecture selection. Our focus on parameter optimization is
intentional, as it allows the designer to focus her creative abil-
ities and engineering judgment on the architecture problem,
using computational aids as interactive tools in a larger design
process [10, 11]. This focus is common in design optimization
(e.g. aircraft design in [11] and 3D CAD optimization in [10]).

To formalize the design optimization problem, we take a
high-level view of the robot design problems (shown in Fig. 2),
where a design problem has five components:

1) Design parameters: The system designer has the ability
to tune certain continuous parameters θ ∈ Θ ⊆ Rn; e.g.,
control gains or the positions of nodes in a sensor network.

2) Exogenous parameters: Some factors are beyond the
designer’s control, such as wind speeds or sensor noise. We
model these effects as random variables with some distribution
ϕ ∼ Φ supported on a subset of Rm. We assume no knowledge
of Φ other than the ability to draw samples i.i.d..

3) Simulator: Given particular choices for θ and ϕ, the
system’s state s ∈ S evolves in discrete time according to
a known simulator S : Θ×Φ 7→ ST . This simulator describes
the system’s behavior over a finite horizon T as a trace of
states s1, . . . , sT . S should be deterministic; randomness must
be “imported” via the exogenous parameters.

4) Cost: We assume access to a function J : ST 7→ R
mapping system behaviors (i.e. a trace of states) to a scalar
performance metric that we seek to minimize.

5) Constraints: The choice of design parameters is gov-
erned by a set of constraints ci : Θ 7→ R with index set
i ∈ Ic. Design parameters θ are feasible if ci(θ) ≥ 0 ∀i ∈ Ic.
Here, we consider constraints as functions of θ only; we leave
the extension to robust constraints involving ϕ to future work.

We can make this discussion concrete with an example: con-
sider the autonomous ground vehicle (AGV) design problem
illustrated in Fig. 3. In this problem, our goal is to design a
localization and navigation system that will allow the AGV to
safely navigate between two obstacles. The AGV can estimate
its position using an extended Kalman filter (EKF) with noisy

Fig. 3: A design optimization problem for an AGV localization
and navigation system. The goal is to find placements for two
range sensors along with parameters for the navigation system
that allow the robot to safely pass through the narrow doorway.

measurements of its range from two nearby beacons and its
heading from an IMU. The robot uses this estimate with a
navigation function [22] and feedback controller to track a
collision-free path between the obstacles.

In this problem, the design parameters θ include the (x, y)
locations of the two range beacons b1, b2 ∈ R2 and the
feedback controller gains k ∈ R2. The exogenous parameters
ϕ are the actuation and sensor noises at each timestep wt ∈ R3

and vt ∈ R3, drawn i.i.d. from Gaussian distributions N (0, Q)
and N (0, R), respectively, as well as the initial state (also
Gaussian). The simulator ξ integrates the AGV’s dynamics
using a fixed timestep, updating the EKF and evaluating the
navigation controller at each step. The cost function J assigns
a penalty to collisions with the environment, estimation errors,
and deviations from the goal location. We will return to this
example in more detail in Section VI-A; first, we discuss our
approach to design optimization and robustness analysis in
Sections IV and V, respectively.

IV. DESIGN OPTIMIZATION

Given the notation from Section III, we can formally pose
the robot design optimization problem. In formulating the
optimization objective, it is important to consider the variance
introduced by the exogenous parameters ϕ. Simply minimizing
the expected value of the cost Eϕ∼Φ

[
J ◦ S (θ, ϕ)

]
(where

◦ denotes composition) can lead to myopic behavior where
exceptional performance for some values of ϕ compensates for
poor performance on other values; this is related to the phe-
nomenon of “reward hacking” in reinforcement learning [23].

Ideally, we would like our designs to be robust to variations
in exogenous parameters: changing ϕ should not cause the
performance to change much. We can include this requirement
as a heuristic by penalizing the variance of J . Intuitively,
this heuristic “smooths” the cost function with respect to the
exogenous parameters: regions of high variance (containing
sharp local minima) are penalized, while regions of low
variance are rewarded. We return to justify this connection
to robustness in Section V-C. This heuristic leads us to the
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variance-regularized robust design optimization problem:

min
θ∈Θ

E
ϕ∼Φ

[
J ◦ S (θ, ϕ)

]
+ λVarϕ∼Φ

[
J ◦ S (θ, ϕ)

]
(1a)

s.t. ci(θ) ≥ 0 ∀i ∈ Ic (1b)

Practically, we replace the expectation and variance with
unbiased estimates over N samples ϕi ∼ Φ, i = 1, . . . , N .

min
θ∈Θ

1

N

N∑
i=1

[
J ◦ S (θ, ϕi)

]
(2a)

+ λ

∑N
i=1 (J ◦ S (θ, ϕi))

2

N − 1
−

(∑N
i=1 J ◦ S (θ, ϕi)

)2

(N − 1)N


s.t. ci(θ) ≥ 0 ∀i ∈ Ic (2b)

Of course, these Monte-Carlo estimators will require multi-
ple evaluations of J◦S to evaluate (2a). Since S might itself be
expensive to evaluate, approximating the gradients of (2a) and
(2b) using finite differences will impose a large computational
cost (2nN additional evaluations of J ◦ S and ci at each
step). Instead, we can turn to automatic differentiation (AD)
to directly compute these gradients with respect to θ, which
we can use with any off-the-shelf gradient-based optimization
engine. The precise choice of optimization algorithm is driven
by the constraints and is not central to our framework. If the
constraints are hyper-rectangle bounds on θ, then algorithms
like L-BFGS-B may be used, but if the constraints are more
complex then sequential quadratic programming or interior-
point methods may be used. Our implementation provides
an interface to a range of optimization back-ends through
SciPy [24], and we plan to add support for hybrid methods
combining local gradient descent with gradient-free population
methods in a future work.

In this framework, the user need only implement the
simulator and cost function for their specific problem us-
ing a differentiable programming framework like the JAX
library for Python [13], and this implementation can be
used automatically for efficient gradient-based optimization.
By implementing a library of additional building blocks in
this AD paradigm (e.g. estimation algorithms like the EKF),
we can provide an AD-based design optimization tool that
strikes a productive balance between flexibility and ease of
use. In the supplementary materials, we provide a prototype
implementation of this tool, containing some of these AD
building blocks. In future work, we hope to further expand
this library to include more common robotics algorithms.

V. DESIGN CERTIFICATION VIA ROBUSTNESS ANALYSIS

Once we have found an optimal choice of design param-
eters, we need to verify that the design will be robust to
uncertainty in the exogenous parameters. Similarly to 3D CAD
and FEA packages for mechanical engineers, a successful
design tool not only helps an engineer refine her design (i.e.
using the design optimization framework in Section IV) but

also helps her analyze and predict its performance. To certify
the performance of an optimized design, we are interested in
two distinct questions. First, what is the maximum cost we can
expect given variation in the exogenous parameters? Second,
how sensitive is the cost to external disturbances: by how much
can a change in the exogenous parameters increase the cost?

Answering these questions is difficult because we must
extrapolate from a finite number of simulations to predict
worst-case performance. To address this difficulty, we develop
a probabilistic approach based on extreme value theory in
statistics [25, 26, 27]. We begin by stating a relevant result:

Theorem V.1 (Extremal Types Theorem; 3.1.1 in [27]).
Let X1, . . . , XN be random variables drawn i.i.d. from an
unknown distribution and MN = maxi{Xi} be the sample
maximum. If there exist sequences of normalizing constants
{aN > 0} and bN such that the limiting distribution of
(MN − bN )/aN as N →∞ is non-degenerate, then

lim
N→∞

Pr [(MN − bN )/aN ≤ z] = G(z) (3)

where G(z) is a Generalized Extreme Value Distribution
(GEVD) with location µ, scale σ, and shape ξ,

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}
, (4)

supported on {z : 1 + ξ(z − µ)/σ > 0}.

In the special case ξ = 0, this distribution has a slightly
different form (known as a Gumbel distribution), but the result
holds. In practice, an and bn are not estimated directly (this
merely changes the fit values of µ and σ) and the GEVD is fit
directly to MN by either minimizing the log likelihood [27] or
estimating the posterior distribution of (µ, σ, ξ) using Markov
Chain Monte Carlo sampling [28]. A useful feature of the
GEVD is that if our data suggest that ξ < 0, then the support
of G(z) is bounded above and we can estimate an upper bound
on the maximum M∞. If ξ ≥ 0, then we cannot estimate
a strict upper bound, but we can provide for a confidence
interval for M∞ instead. In the following sections, we apply
this theorem to analyze the robustness of an optimized design.

A. Estimating the worst-case performance

Our first robustness question concerns the worst-case per-
formance of our design: given variation in ϕ, what is the
maximum cost1 we can expect for our choice of design
parameters θ? Our insight is that the variation ϕ ∼ Φ induces
an (unknown) distribution in J ◦ S(θ, ϕ), so J ◦ S(θ, ϕ) a
random variable to which the extremal types theorem applies.
Algorithm 1 provides a means for estimating the maximum of
J ◦ S(θ, ϕ) by fitting a GEVD to observed maximums MN .
Generally speaking, the block size N and sample size M
should be chosen to be as large as computationally feasible
to reduce the variance of the GEVD estimate [27].

1Any function of the simulation trace can be substituted for cost without
changing the framework.
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Algorithm 1 An algorithm for estimating the parameters of a
GEVD governing the expected maximum cost J ◦ S
Require: Block size N > 0 and sample size M > 0
Xi

j ← J ◦S(θ, ϕij); with ϕij ∼ Φ, 1 ≤ j ≤ N , 1 ≤ i ≤M
M i

N ← max{Xi
1, . . . , X

i
N} for i = 1, . . . ,M

(µ, σ, ξ)← posterior GEVD estimate given {M i
N}

In practice, we use the automatic parallelization features
of JAX to efficiently compute Xi

j and obtain the posterior
distribution of µ, σ, and ξ using Markov Chain Monte Carlo
sampling with the PyMC3 library [28]. From this posterior
distribution, we take the 97% confidence level for each pa-
rameter (µ∗, σ∗, ξ∗). If ξ∗ < 0, we have confidence that the
corresponding GEVD has bounded support on the right and
estimate the maximum cost Jmax ≤ µ− σ/ξ. Otherwise, we
can estimate the 97% confidence level for Jmax using the
GEVD described by (µ∗, σ∗, ξ∗).

B. Estimating sensitivity

In addition to the expected worst-case performance, it is
also useful to know the sensitivity of that performance. That
is, if the design performs well in one situation (i.e. for some
value of ϕ), then how much can we expect its performance to
degrade if ϕ changes? Formally, we define the sensitivity L
as the least constant such that for any two ϕ1, ϕ2 ∼ Φ,

|J ◦ S(θ, ϕ1)− J ◦ S(θ, ϕ2)| ≤ L||ϕ1 − ϕ2||

If J◦S is Lipschitz then L will be finite and equal the Lipschitz
constant of J ◦ S, but we do not require this assumption; if
J ◦S is not Lipschitz, then we can estimate a high-confidence
upper bound on L.

In both cases, we can exploit the fact that L is an extreme
value of the slope |J ◦S(θ, ϕ1)−J ◦S(θ, ϕ2)|/||ϕ1−ϕ2|| and
apply the extremal types theorem. Let X = ||J ◦S(θ, ϕ1)−J ◦
S(θ, ϕ2)||/||ϕ1 − ϕ2|| be a random variable with ϕ1, ϕ2 ∼ Φ.
The distribution of X is unknown, but the extremal types
theorem lets us characterize the sample maximum LN =
max{X1, . . . , XN} using a GEVD. Algorithm 2 provides our
method for fitting this distribution, and a concrete Python
implementation is provided in the supplementary materials.
This approach is similar to that in [25, 29] but removes the
assumption that L is bounded by fitting a GEVD instead of
a reverse Weibull distribution, allowing our approach to apply
when J ◦ S is not Lipschitz.

Algorithm 2 An algorithm for estimating the parameters of a
GEVD governing the sensitivity of J ◦ S
Require: Block size N > 0 and sample size M > 0
Xi

j ← |J ◦ S(θ, ϕij,1) − J ◦ S(θ, ϕij,2)|/||ϕij,1 − ϕij,2||,
with ϕij,1, ϕij,2 ∼ Φ, j = 1, . . . , N , i = 1, . . . ,M

Li
N ← max{Xi

1, . . . , X
i
N} for i = 1, . . . ,M

(µ, σ, ξ)← posterior GEVD estimate given {Li
N}

Algorithm 2 is similar to Algorithm 1, but the interpretation
of the results differs in that the fit parameters from Algorithm 2

allow us to understand the sensitivity of a design. In particular,
if the 97% confidence level for the shape parameter ξ∗ is
negative, then J ◦ S is likely Lipschitz continuous with
Lipschitz constant L ≤ µ − σ

ξ . If ξ > 0, then J ◦ S is likely
not Lipschitz but we can estimate the 97% confidence level
for L. As a result, this statistical approach allows us to avoid
making prior assumptions about the continuity of our system.

C. Connections to Design Optimization

Here, we will attempt to justify the variance regularization
heuristic introduced in Section IV with reference to the
worst-case performance Jmax and sensitivity L computed
by Algorithms 1 and 2. First, let’s examine the connection
with expected worst-case performance Jmax. If we take the
probability of observing a cost J = J ◦ S(θ, ϕ) within α of
Jmax (0 < α < 1) and apply Cantelli’s inequality [30], we
see that

Prϕ∼Φ(J ≥ αJmax) ≤
Varϕ∼Φ[J]

Varϕ∼Φ[J] + (αJmax − Eϕ∼Φ[J])2

Minimizing Varϕ∼Φ[J] in addition to Eϕ∼Φ[J ] will correlate
with decreasing this upper bound. As a result, we expect
variance regularization to correlate with decreased probability
of encountering near-worst-case performance.

We can also justify the connection between variance regu-
larization and reducing sensitivity L by looking at the special
case where J ◦ S is Lipschitz and the elements of ϕ are in-
dependent. The Bobkov-Houdré variance bound for Lipschitz
functions [31] holds that Varϕ∼Φ[J] ≤ L2σ2

Σϕ, where σ2
Σϕ is

the variance of the sum of elements in ϕ. This bound does not
explicitly show that minimizing Varϕ∼Φ[J] decreases L, but it
suggests a correlation that we hope to revisit in future work.

VI. EXPERIMENTAL RESULTS

So far, we have developed the theoretical and algorithmic
basis for our robot design framework. It remains for us to
empirically answer two questions: first, is our framework
useful for solving practical robot design problems? Second,
is our statistical method for robustness analysis sound?

In this section, we answer these questions through the lens
of two case studies. The first involves finding optimal sensor
placements for robot navigation, and the second involves
optimizing a pushing strategy for multi-agent manipulation.
We demonstrate the success of our optimization and robustness
analysis framework on each example, and we provide results
from hardware testing in both cases. Next, we include an
ablation study justifying our use of automatic differentiation
and variance regularization. We conclude by verifying the
soundness of our statistical robustness analysis.

A. Case study: optimal sensor placement for navigation

First, we return to the AGV localization and navigation
example introduced in Fig. 3. This design problem requires
finding an optimal placement for two ranging beacons to
minimize estimation error and allow the robot to safely
navigate between two obstacles. Range measurements from
these beacons are integrated with IMU data via an EKF, and
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the resulting state estimate is used as input to a navigation
function and tracking feedback controller to guide the robot
to its goal. This design problem has two important features.
First, it involves interactions between multiple subsystems:
the output from the EKF is used by the navigation function,
which feeds input to the controller, which in turn influences
future EKF predictions. Second, the effect of uncertainty on
the robot’s performance is relatively strong.

The design parameters are the (x, y) locations of two range
beacons and two feedback controller gains (6 total design
parameters). The exogenous parameters include uncertainty in
the robot’s initial state along with actuation and sensing noise
at each of T timesteps (3 + 6T total exogenous parameters).
The cost function has three components: one penalizing large
estimation errors, one penalizing deviations from the goal,
and one penalizing collisions with the environment. A formal
definition of the design and exogenous parameters, simulator,
cost, and constraints is given in Table I in the appendix. We
also include code in the supplementary materials for defining
this design problem in our framework and running our design
optimization and sensitivity analysis methods. The simulator
and cost functions are implemented in Python using the JAX
framework for automatic differentiation.

Fig. 4 compares simulated trajectories for the initial and
optimized beacon placements and feedback gains, clearly
showing the impact of design optimization. Initially, poor
beacon placement causes the robot to accumulate estimation
error and drift away from its goal. The optimized design moves
the beacons off to the side to eliminate this drift. Optimization
(N = 512, λ = 0.1, L-BFGS-B back-end) took 3 minutes 34 s
on a laptop computer (8GB RAM, 1.8GHz 8-core processor).

We tested the initial and optimized design in hardware
using the Turtlebot 3 platform. To emulate range beacon
measurements in our lab, odometry and laser scan data were
fused into a full state estimate from which range measurements
were derived (the full state estimate was hidden from the robot,
which only received the emulated range measurements). The
control frequency was increased from 2Hz in simulation to
10Hz in hardware, and the obstacles were recreated in our
laboratory. The hardware results, shown in Figs. 5 and 6,
confirm our simulation results: the initial design suffers from
drift and ends approximately 10 cm from its target position,
while the optimized design does not drift and ends within
5 cm of the goal. This difference can be seen most clearly
in the posterior error covariance from the EKF; Fig. 6 shows
how the optimized design greatly reduces uncertainty in the
state estimate compared to the initial design. No parameter
estimation or tuning was required.

Finally, we apply the robustness analysis from Section V to
certify the maximum absolute estimation error ∥xt − x̂t∥ in
the optimized design (in meters, projected into the xy plane).
Note that this error is different from the cost used during
optimization, but we can still apply Algorithm 1 simply by
changing the cost function for the duration of the analysis.
Using block size N = 1000 and sample size M = 1000, we fit
a GEVD using Algorithm 1 to the maximum estimation error

Fig. 4: Simulated trajectories for the initial (top) and optimized
(bottom) AGV designs. Color indicates the value of the
navigation function. Beacon positions are bounded within the
area shown.

Fig. 5: Hardware performance of initial (left) and optimized
(right) AGV designs. Square (green) shows the goal; triangles
(red) show beacon locations. The optimized design eliminates
drift relative to goal.

for both the initial and optimized designs. These distributions
are shown in Fig. 7; the optimized design significantly reduces
the expected maximum estimation error. We observe that the
97% confidence level for the shape parameter ξ = 0.059 is
positive, so we cannot conclude that the worst-case estimation
error is bounded, but we can derive a high-confidence bound
of 0.21m for our optimized design.

Fig. 6: Hardware results for EKF state estimates and posterior
error covariance 3σ ellipse for initial and optimized designs.
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Fig. 7: GEVD CDF fit using Algorithm 1 for the maximum
absolute estimation error in the xy-plane in both the initial
and optimized designs, with 97% confidence levels.

B. Case study: collaborative multi-robot manipulation

Our second example involves finding a control strategy for
multi-agent collaborative manipulation. In this setting, two
ground robots must collaborate to push a box from its current
location to a target pose (as in Fig. 8). Given the desired box
pose and the current location of each robot, a neural network
plans a trajectory for each robot, which the robots then track
using a feedback controller (θ includes both the neural network
parameters and the tracking controller gains, with a total of
454 design parameters). The exogenous parameters include
the coefficient of friction for each contact pair, the mass of
the box, the desired pose of the box, and the initial pose for
each robot (a total of 13 exogenous parameters; we vary the
desired box pose and initial robot poses to prevent over-fitting
during optimization). The cost function is simply the squared
error between the desired box pose (including position and
orientation) and its true final pose after a 4 s simulation. A
full definition of this design problem and contact dynamics
model is included in Table II in the appendix. We implement
the contact dynamics simulator, trajectory planning neural
network, and path tracking controller in Python using JAX.

Compared to the design problem in our first case study, this
system has a simpler architecture (fewer subsystems) but more
complicated dynamics and a much higher-dimensional design
space. This example also showcases a different interpretation
of the exogenous parameters: instead of representing true
sources of randomness, these parameters represent quantities
that are simply unknown at design-time. For example, the

Fig. 8: Multi-agent manipulation design optimization problem.
The goal is to find parameters for robot controllers and a neural
network planner that push the box from an initial position
(solid) to a desired position (striped).

Fig. 9: GEVD CDF fit using Algorithm 2 for the maximum
sensitivity of the optimized collaborative manipulation strategy
to variation in friction coefficient. z has units of meters per
unit change in friction coefficient.

target position for the box is not random in the same way
as sensor noise in the previous example, but since we cannot
choose this value at design-time it must be included in ϕ. As a
result, minimizing the expected cost with respect to variation
in ϕ yields a solution that achieves good performance for many
different target poses, enabling the user to select one at run-
time and be confident that the design will perform well.

To solve this design problem, the neural network parameters
are initialized i.i.d. according to a Gaussian distribution, and
the tracking controller gains are set to nominal values. We
then optimize the parameters using N = 512, λ = 0.1, and
L-BFGS-B back-end. This optimization took 45 minutes 32 s
on a laptop computer (8GB of RAM and a 1.8GHz 8-core
processor). Fig. 10 shows a comparison between the initial
and optimized strategies, and Fig. 13 in the appendix shows
additional examples of the optimized behavior. The target pose
is drawn uniformly [x, y, θ] ∈ [0, 0.5]2× [−π/4, π/4], and the
optimized design achieves a mean squared error of 0.0964.

We tested the optimized design in hardware, again using the
Turtlebot 3 platform. An overhead camera and AprilTag [32]
markers were used to obtain the location of the box and each
robot. At execution, each robot first moves to a designated
starting location near the box, plans a trajectory using the
neural network policy, and tracks that trajectory at 100Hz until
the box reaches its desired location or a time limit is reached.
Results from this hardware experiment are shown in Fig. 10,
and a video is included in the supplementary materials. Again,
no parameter tuning or estimation was needed.

After successfully testing the optimized design in the labo-
ratory, it is natural to ask how its performance might change
as conditions (particularly the coefficients of friction) change.
Using M = 500 blocks of size N = 1000 each, we use
Algorithm 2 to fit a GEVD for the sensitivity constant L with
respect to the coefficients of friction between each contact
pair. We do this by allowing these coefficients to vary and
freezing other elements of ϕ at nominal values (box mass 1 kg
and target pose [0.3, 0.3, 0.3]). The fit distribution is shown in
Fig. 9. The 97% confidence level for the shape parameter is
ξ = 0.118 > 0, so we cannot conclude that the performance of
our design is Lipschitz with respect to the friction coefficients,
but we can estimate the 97% confidence level for L as 0.63.
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Fig. 10: Left: Initial (top) and optimized (bottom) manipulation strategies in simulation (light/dark colors indicate initial/final
positions, stripes indicate desired position). Right: Optimized manipulation strategy deployed in hardware (video included in
the supplementary materials). (a) The robots first move to positions around the box. (b) Using the optimized neural network,
the robots plan a cubic spline trajectory pushing the box to its desired location. (c-d) The robots execute the plan by tracking
that trajectory.

C. Design optimization ablation study

Our case studies in Sections VI-A and VI-B help demon-
strate the utility of our framework for solving realistic robotics
problems. However, it remains to justify the choices we made
in designing this framework. For instance, how does automatic
differentiation compare with other methods for estimating the
gradient (e.g. finite differences)? What benefit does variance
regularization in problem (2) bring? We answer these questions
here using an ablation study where we attempt to isolate the
impact of each of these features.

First, why use automatic differentiation? On the one hand,
AD allows us to estimate the gradient with only a single eval-
uation of the objective function, while other methods (such as
finite differences, or FD) require multiple evaluations. On the
other hand, AD necessarily incurs some overhead at runtime,
making each AD function call more expensive than those
used in an FD scheme. Additionally, some arguments [17]
suggest that exact gradients may be less useful than finite-
difference or stochastic approximations when the objective is
stiff or discontinuous. We compare AD with a 3-point finite-
difference method by re-solving problem (2) for both case
studies, keeping all parameters constant (N = 512, λ = 0.1,
same random seed) and substituting the gradients obtained
using AD for those computed using finite differences. Fig. 11
shows the results of this comparison. In the sensor placement
example, AD achieves a lower expected cost and cost variance,
and it runs in 32% less time. In the collaborative manipulation
example, both methods achieve similar expected cost and
variance, but the AD version runs nearly 19x faster. These

results lead us to conclude that AD enables more effective op-
timization than finite differences and is an appropriate choice
for our framework. An exciting extension of our framework
involves combining AD with stochastic population methods,
but we leave this to future work.

The next question is whether variance regularization brings
any benefit to the design optimization problem. To answer
this question, we compare the results of re-solving both case
studies with variance weight λ = 0.1 and λ = 0. These results
are shown in Fig. 11; surprisingly, in the sensor placement
example we see that the variance-regularized problem results
in a lower expected cost, contrary to the intuition that reg-
ularization requires a trade off with increased expected cost.
We expect that this lower expected cost may be a result of
the regularization term smoothing the objective with respect
to the exogenous parameters. However, these benefits are less
pronounced than the benefits from automatic differentiation,
and we do not see a distinct benefit in our second case study.

D. Accuracy of robustness analysis

To verify the soundness of our statistical robustness analysis
methods, we need to determine whether the fit GEVD is likely
to either under- or overestimate the worst-case performance of
a design. Put simply, is our approach falsely optimistic (under-
estimating the worst-case) or conservative (overestimating)?

To answer these questions, we compare the cumulative
distribution function (CDF) of the fit GEVD with an empirical
CDF observed from data. Algorithms 1 and 2 both estimate a
posterior distribution for µ, σ, and ξ, allowing us to construct
an upper-bound and lower-bound GEVD using the 97% and
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(a) AD vs. FD; sensor placement (b) AD vs. FD; manipulation (c) Effect of VR; sensor placement (d) Effect of VR; manipulation

Fig. 11: (a)-(b) Improvement of automatic differentiation (AD) over finite differences (FD) in both case studies. (c)-(d) Effect
of variance regularization (VR) in both case studies.

3% confidence level parameter estimates. Using these distribu-
tions, we can measure false optimism and conservatism using
a one-sided Kolmogorov-Smirnov (KS) test [33].

Fig. 12 compares the estimated GEVDs and empirical data
for worst-case performance in the sensor placement example
(fit using Algorithm 1) and sensitivity in the manipulation
example (fit using Algorithm 2). In the former case, we see
that the empirical CDF lies between the upper- and lower-
confidence limits for the fit distribution, indicating that the fit
is neither falsely optimistic at the 97% level nor conservative
at the 3% level (these conclusions are confirmed by the KS
statistics provided in Table III in the appendix). In the latter
case, even though the empirical CDF extends slightly beyond
the estimated bounds in some regions, the statistical analysis in
Table IV indicates that the estimated GEVD is neither falsely
optimistic at the 97% level nor conservative at the 3% level.
In addition, we see that the gap between the 3% and 97%
distributions is relatively small in both examples in Fig. 12.

VII. DISCUSSION AND CONCLUSION

In this paper, we develop an automated design tool to
improve the productivity of robot designers by a) enabling
efficient optimization of robot designs and b) allowing users
to certify the robustness of those designs. In developing this
framework, we make two main algorithmic and theoretical
contributions. First, we use differentiable programming for
end-to-end optimization of robotic systems, creating a flex-
ible software framework for design optimization. Second, we
develop a novel statistical framework for certifying the worst-
case performance and sensitivity of optimized designs.

To validate this framework and demonstrate the usefulness
of our contributions, we present two case studies to highlight
how our framework can be used for design optimization in
practical robotics problems. Moreover, we show that our op-
timized designs are robust enough to deploy in hardware, and
data from these hardware experiments validate our optimiza-
tion approach. Finally, we provide an ablation study to justify
the architecture of our optimization framework and a statistical
analysis showing the soundness of our robustness analysis
techniques. We hope that by combining flexible design op-
timization with robustness certification in our framework we
can increase the productivity of robotics engineers, shorten the
design cycle, and help bring more complex robotic systems to
life.

There are a number of interesting directions for future work.
First, since our approach relies on sampling from Φ without
any further information, it will require a large number of
samples to accurately capture rare events. We can close this
gap when more information about Φ is available, perhaps using
adversarial testing or importance sampling. Second, our frame-
work is currently focused on tuning continuous parameters; we
hope to incorporate stochastic search over discrete parameters
in a future work. Finally, we hope to expand the software
implementation of our framework to include a richer library
of autonomy building blocks and demonstrate a wider range
of applications in designing autonomous systems, including
robotic arms, autonomous air and spacecraft, and networked
autonomous systems.
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Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[25] K. Sridhar, O. Sokolsky, I. Lee, and J. Weimer,
“Improving neural network robustness via persistency
of excitation,” arXiv, 2021. [Online]. Available: https:
//arxiv.org/abs/2106.02078

[26] G. Wood and B. Zhang, “Estimation of the lipschitz
constant of a function,” Journal of Global Optimization,
vol. 8, no. 1, 1996.

[27] S. Coles, An introduction to statistical modeling of ex-
treme values. Springer, 2001.

[28] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Prob-
abilistic programming in python using pymc3,” PeerJ
Computer Science, vol. 2, 2016.

[29] C. Knuth, G. Chou, N. Ozay, and D. Berenson, “Planning
with learned dynamics: Probabilistic guarantees on safety
and reachability via lipschitz constants,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 5129–5136,
2021.

[30] S. Boucheron, G. Lugosi, and P. Massart, Concentration
inequalities: A nonasymptotic theory of Independence.
Oxford University Press, 2016.

[31] S. G. Bobkov and C. Houdré, “Variance of lipschitz
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APPENDIX

SENSOR PLACEMENT DESIGN PROBLEM STATEMENT

We model the robot with discrete-time Dubins dynamics
with three state variables (q = [x, y, θ]), two control inputs for
linear and angular velocity (u = [v, ω]), and noisy transition
modelxy

θ


t+1

=

xy
θ


t

+

∆tv cos(θ +∆tω/2)
∆tv sin(θ +∆tω/2)

∆tω

+ wt

where ∆t = 0.5 and wt ∈ R3 is the actuation noise (wt ∼
N (0, Q) with covariance Q ∈ R3×3). The measurement model

TABLE I: Formal statement of the sensor placement design
problem with T discrete timesteps.

Design
parameters

θ = [b1, b2, k] ∈ R6

Beacon locations: bi = (xbi, ybi) ∈ R2 for i = 1, 2

Feedback gains: k ∈ R2

Exogenous
parameters

ϕ = [q0, w0, . . . , wT−1, v0, . . . , vT−1] ∈ R3+6T

Initial state: q0 ∈ R3, q0 ∼ N (q̄0, P0);

P0 = 0.001I3×3

Actuation noise: wt ∈ R3, wt ∼ N (0, Q);

Q = (∆t)2diag ([0.001, 0.001, 0.01])

Measurement noise: vt ∈ R3, vt ∼ N (0, R)

R = diag ([0.1, 0.01, 0.01])

Simulator S initializes the robot with state q0 and EKF state estimate
q̄0 and error covariance P0, then steps forward with interval
∆t = 0.5 for T = 60 total steps. At each step, the simulator

1) Evaluates the navigation function to find a collision-
free path to the goal,

2) Uses a feedback controller to track that path,
3) Updates the state using forward Euler integration,
4) Performs an EKF prediction, obtains a measurement

zt, and performs an EKF update.
S returns a trace st = [q, q̂, Pt|t, Vt] containing true states,
estimated states, estimated posterior error covariance, and the
value of the navigation function at each time step.

Cost J has three components. The first (∥qt − q̂t∥2) min-
imizes the estimation error of the EKF, the second
(∥qt∥) guides the robot towards the goal, and the
third (both Vt terms) avoids collision with the environ-
ment: J = 1

T

∑T
t=1

(
100 ∥qt − q̂t∥2 + ∥qt∥2 + 0.1Vt

)
+0.1maxt Vt

Constraints (xbi, ybi) ∈ [−3, 0]× [−1, 1] for i = 1, 2

is

zt =

(xt − xb1)2 + (yt − yb1)2
(xt − xb2)2 + (yt − yb2)2

θ

+ vt

where vt is the measurement noise (vt ∼ (0, R) and covariance
R ∈ R3×3), modeling range measurements from radio or
acoustic beacons b1 and b2 and inertial or magnetic measure-
ments of θ. The initial state of the robot is normally distributed
q0 ∼ N (q̄0, P0) for mean initial state q̄0 ∈ R3 and initial
covariance P0 ∈ R3×3. The navigation function (shown in
Fig. 4) is Vt(xt, yt) = 2(x2t +y

2
t )+0.05/dt (dt is the distance

from the robot to the nearest obstacle at step t). Formally,
we define this problem in the language of our framework in
Table I.

MULTI-AGENT MANIPULATION DESIGN PROBLEM
STATEMENT

We model each ground robot as a double integrator with
states [px, py, θ, vx, vy, ω]. Given control inputs representing
desired linear velocity vd in the [cos θ, sin θ] direction and
desired angular velocity ωd, the robot tracks those desired
velocities by applying forces and torques subject to a fric-
tion cone constraint. The box is modeled as a rigid body
with friction against the ground. Contact forces between the
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box and each robot are modeled using a penalty method
described in [17], where the normal force is given by fn =
kc min(ϕ, 0)−kdϕ̇1ϕ<0 (ϕ is the signed distance between the
robot and the box, kc = 300N/m is the contact stiffness, kd
is a damping coefficient chosen to ensure critical damping,
and 1ϕ<0 is the indicator function equal to 1 when the box
and robot are in contact and 0 otherwise). Friction in the
box/ground and box/robot contacts was modeled as Coulomb
friction, resulting in a tangential force ft = µfn with µ = cψ
if ψ < ψs and µ = µd otherwise, where mud is the coefficient
of dynamic friction (µd varies for each contact pair), ψ is the
tangential velocity at the point of contact, ψs = 0.3m/s is the
tangential velocity where slipping begins, and c = µd/ψs was
chosen to ensure a continuous friction model.

Each ground robot uses a proportional controller (with
tunable gains) to find vd and ωd to track a cubic spline
reference trajectory. The start point of each spline is set to
match the robot’s current position, the end point is set based a
known offset from the desired box location, and the central
control point of the spline is set using a neural network
(with tunable parameters). The neural network is given inputs
including the current position of each robot and the desired
box pose, all referenced against the current box pose, and it
predicts (x, y) locations for the control point for each robot.
The network uses tanh activations on each hidden layer.

Formally, we define this problem in the language of our
framework (design parameters, exogenous parameters, etc.) in
Table II. The design parameters include the trajectory tracking
control gains and network parameters, while the exogenous pa-
rameters include the desired box pose, coefficients of friction,
box mass, and initial robot poses.

KOLMOGOROV-SMIRNOV TEST RESULTS

Table III provides results from one-sided KS tests for the
GEVD estimated using Algorithm 1 in the sensor placement
case study, while Table IV provides similar results for Algo-
rithm 2 in the collaborative manipulation case study.

TABLE II: Formal statement of the collaborative manipula-
tion design problem using a planning network with np total
parameters (weights and biases).

Design
parameters

θ = [kv , kω , wi, bi] ∈ R2+np

Trajectory tracking gains: [kv , kw] ∈ R2

Network weights and biases: (wi, bi) for i = 1, . . . , np

Exogenous
parameters

ϕ = [µrg , µbg , µbr,mb, pbd, pr1, pr2] ∈ R13

Robot/ground, box/ground, box/robot coefficients of friction:

[µrg , µbg , µbr] ∈ [0.6, 0.8]× [0.4, 0.6]× [0.1, 0.3]

Box mass: mb ∈ [0.9, 1.1]

Desired box pose:

pbd = [xd, yd, θd] ∈ [0, 0.5]2 × [−π/4, π/4]

(Above parameters are uniformly distributed)

Initial robot pose: pri = [x0, y0, θ0] ∼ N (p̄ri,Σ);

Σ = 0.01I3×3, i = 1, 2.

Simulator S initializes the robots at the initial states in ϕ relative to
the box. Since these initial states may be in contact, we
simulate 0.5 s of settling time at a 0.01 s timestep, then re-
index the robot positions and desired box pose relative to the
settled box pose. We then evaluate the planning network and
track the planned path for 4 s at a 0.01 s timestep. At each
timestep, 1) evaluate the spline tracking controller, 2) evaluate
contact dynamics between the box, robots, and ground, and
3) integrate forces and torques to obtain box and robot states
at the next timestep. S returns a trace st = [qr1, qr2, qb]
containing the states of each robot and the box over time
(relative to the initial pose of the box after the settling period).

Cost J is simply the squared distance between the final box pose
and the desired box position (x−xd)

2+(y−yd)
2+(θ−θd)

2

Constraints Network parameters were not constrained. kv and kw were
constrained to be less than 10.
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Fig. 13: Additional examples of optimized multi-agent manipulation behavior in simulation, showing that the optimized strategy
reaches the goal in most cases. Each example shows the results of executing the optimized pushing strategy for 4 s with a
randomly selected set of friction coefficients, random target pose, and random initial robot poses. Light/dark colors indicate
initial/final positions, respectively, and the striped box indicates the target pose.

Null Hypothesis KS Statistic p-value Conclusion
(p < 0.05)

False
Optimism

97% GEVD under-estimates worst-case performance 0.0410 0.0337 Reject; 97% GEVD does not under-estimate worst-
case performance

Conservatism 3% GEVD over-estimates worst-case performance 0.0529 0.00354 Reject; 3% GEVD does not over-estimate worst-case
performance

TABLE III: Results of one-sided KS tests for the sensor placement case study. These results indicate that Algorithm 1 is sound
in this case.

Null Hypothesis KS Statistic p-value Conclusion
(p < 0.05)

False
Optimism

97% GEVD under-estimates sensitivity 0.0399 6.75× 10−5 Reject; 97% GEVD does not under-estimate sensi-
tivity

Conservatism 3% GEVD over-estimates sensitivity 0.0618 1.03× 10−10 Reject; 3% GEVD does not over-estimate sensitivity

TABLE IV: Results of one-sided KS tests for the collaborative manipulation case study. These results indicate that Algorithm 2
is sound in this case.
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