
Robotics: Science and Systems 2022
New York City, NY, USA, June 27-July 1, 2022

1

DiPCAN: Distilling Privileged Information for

Crowd-Aware Navigation

Gianluca Monaci, Michel Aractingi, Tomi Silander

NAVER LABS Europe, Grenoble, France

Email: firstname.lastname@naverlabs.com

Abstract—Mobile robots need to navigate in crowded environ-
ments to provide services to humans. Traditional approaches to
crowd-aware navigation decouple people motion prediction from
robot motion planning, leading to undesired robot behaviours.
Recent deep learning-based methods integrate crowd forecasting
in the planner, assuming precise tracking of the agents in the
scene. To do this they require expensive LiDAR sensors and
tracking algorithms that are complex and brittle. In this paper
we propose a two-step approach to first learn a robot navigation
policy based on privileged information about exact pedestrian
locations available in simulation. A second learning step distills
the knowledge acquired by the first network into an adaptation
network that uses only narrow field-of-view image data from the
robot camera. While the navigation policy is trained in simulation
without any expert supervision such as trajectories computed by
a planner, it exhibits state-of-the-art performance on a broad
range of dense crowd simulations and real-world experiments.
Video results at https://europe.naverlabs.com/research/dipcan.

I. INTRODUCTION

If robots are to assist humans in everyday tasks, they

must be capable to safely navigate in crowded dynamic

environments. Traditionally, methods addressing social navi-

gation decouple people motion prediction from robot motion

planning [33]. Early approaches consider humans as non-

responsive obstacles [5, 17, 56], resulting in unnatural be-

haviours that cause the robot to, e.g., block human paths [56]

or move in a way that surprises the human, who in turn

reacts unpredictably creating a short oscillatory interaction,

the so-called “reciprocal dance” phenomenon [16]. Subsequent

works have proposed to plan robot path after predicting

future possible trajectories of nearby humans [3, 49]. These

approaches often result in exploding complexity, with possible

future trajectories of pedestrians filling the entire space and

leading to undesired phenomena such as the “freezing robot”

problem [49].

In recent years, promising deep learning-based methods

have been developed to predict pedestrian movement and plan

robot actions. A large body of work in this area focuses on

forecasting trajectories of humans in crowds [25, 35, 55].

Deep Reinforcement Learning (RL) approaches have also

been proposed to jointly model crowd motion and robot con-

trol [6, 13, 28]. While achieving high accuracy in predicting

human paths, these methods rely on precise tracking of the

agents in the scene, usually using combinations of RGB-D

images and wide field-of-view (FOV) LiDAR information.

Therefore, these methods typically face several difficulties

when transferring to a robot platform. On the one hand, it is

Fig. 1: The proposed DiPCAN architecture controls a robot

(top) to reach a target location (bottom) while avoiding dense

dynamic crowds using only the robot wheel odometry and

narrow FOV depth camera. Videos of the experiments can be

viewed at https://europe.naverlabs.com/research/dipcan.

difficult to precisely track moving pedestrians from the robot

perspective: occlusions, motion blur, sensing and processing

power limitations inevitably degrade the quality of the results,

with errors accumulating in the downstream task. On the other

hand, it is desirable to use an affordable sensor suite that does

not require LiDAR and complex sensor fusion techniques for

wide angle, accurate range estimation.

In this work we address the task of point-goal navigation

with a LoCoBot robot [2] in a crowded environment (Fig-

ure 1). The robot has to reach a target location while avoiding

collisions with dynamic and static pedestrians. Following the

above desiderata, we aim to achieve that using only the

narrow FOV image sensor on the robot. To address this

challenging scenario we propose a novel two-step approach

inspired by recent works on legged robot locomotion [26, 27]:

DiPCAN, Distilling Privileged information for Crowd-Aware

Navigation. The proposed system, shown in Figure 2, has three

main components: the base policy π, the encoder µ and the

adaptation module φ. The policy π and encoder µ are trained

simultaneously with reinforcement learning in simulation us-

https://europe.naverlabs.com/research/dipcan
https://europe.naverlabs.com/research/dipcan


Fig. 2: Proposed DiPCAN system. The robot is trained in simulation (right) to reach a goal located across a densely crowded

space. In training phase 1 (top-left), the navigation policy π and the encoder µ are trained together with RL using privileged

information about positions of pedestrians, shown on the top-left. The robot is the black dot and the coloured dots pinpoint

exact people locations within the FOV of the robot, indicated with a grey cone. The grey dots are pedestrians outside of the

FOV of the robot. In training phase 2 (bottom-left) the adaptation module φ is trained using supervised learning to generate

ẑt, an estimate of zt, using only historic image data. On the bottom-left of the figure we show depth images used to train the

adaptation network φD (see Section III-B3). At deployment, φ generates the latent vector ẑt which is concatenated with the

non-privileged information nt and fed to the policy π to generate at.

ing privileged information about exact pedestrians positions,

shown on the top left. The encoder µ embeds the privileged

information into a low-dimensional feature vector zt used by

the policy π together with information about the robot state to

select the next action at to take. Privileged information about

exact pedestrian positions is hard to obtain at runtime, so the

adaptation module φ is subsequently trained to generate ẑt
using non-privileged image information ht. Since both images

and zt are available in simulation, the adaptation module φ is

trained using supervised leaning by minimizing the difference

between the embeddings ẑt and zt, effectively distilling the

knowledge of the network µ into φ. At runtime the adaptation

module φ generates the vector ẑt that is concatenated with the

non-privileged information nt and fed to the base policy π to

generate the robot controls.

The key idea here is to distill the knowledge of the encoder

µ into the adaptation network φ that learns to reason about

pedestrian motion using only historic image data and produces

the low-dimensional context vector ẑt. Crucially, we do not

need to accurately estimate pedestrians’ tracks. However, we

are neither training a policy using images in an end-to-end

fashion, which is known to be complex because of the high

data dimensionality, and hard to transfer because of the large

simulation-to-real gap. As pointed out by Eysenbach et al.

[14], conventional end-to-end RL agents might use too many

bits of information from their environment which are irrelevant

for decision making: compressing state information to latent

representations relevant to the control policy, as done here by

the encoder µ and the adaptation network φ, leads to more

effective training while achieving superior performance.

To summarize, the main contributions of our work are:

• A new approach to bridge the gap between crowd trajec-

tory prediction and realistic robot control using narrow

FOV robot camera. The method is modular and makes

it possible to use the encoder module from any state-

of-the-art crowd modelling method to learn a context

vector from privileged pedestrian position information.

The modularity of the architecture allows the use of dif-

ferent adaptation networks and sensor modalities without

modifying previously trained policies. Here we propose

two adaptation modules, one based on depth images and

one on people detections on RGB images.

• An environment and a procedure to train and evaluate

our method. We demonstrate the DiPCAN approach in a



broad range of conditions and we benchmark against sev-

eral baselines, achieving promising results in challenging

simulation environments.

• The deployment of the proposed architecture on a

LoCoBot robot for real-world navigation experiments.

II. RELATED WORK

A. Navigation with pedestrian collision avoidance

Collision avoidance is the minimum requirement for mobile

robots to safely navigate, and as such is a long-standing area

of research in robotics. Seminal works on collision avoidance

consider only static obstacles [5, 17, 56], leading to well-

known undesired phenomena in dynamic environments such

as robots freezing or “dancing” with nearby pedestrians. To

overcome these limitations, subsequent works include pedes-

trian motion predictions in their models [3, 12, 49]. These

approaches are computationally expensive [12] and predicted

pedestrian trajectories quickly fill the entire space leading to

the well-documented freezing robot problem [49]. In fact,

Dynamic Window Approach (DWA) [17], and modern variants

that use similar trajectory roll-out strategies such as Time Elas-

tic Bands [41], are still the de-facto standard local planning

methods for mobile robots [32].

Recently several methods based on deep learning have

been developed to address the problem of collision avoid-

ance with pedestrians [15, 22, 31, 37, 38, 43]. However,

these methods use an expensive wide-FOV LiDAR sensor to

accurately estimate the position of neighbouring pedestrians.

Few works propose approaches to collision avoidance using

imaging modalities with limited FOV, such as depth [8, 46],

color images [47, 54], or grayscale images [52]. However,

these approaches either do not account for the presence of

dynamic obstacles, or consider scenarios with few pedestri-

ans [8, 46, 47].

In contrast to existing methods, we address the problem of

navigation with pedestrian collision avoidance in extremely

dense crowds using only a narrow FOV imaging sensor.

B. Crowd trajectory prediction

Crowd trajectory modelling and prediction is an active area

of research. While only few relevant methods are reviewed

here, we refer the interested reader to recent comprehensive

surveys on this topic [25, 42].

In their pioneering work, Helbing and Molnar [19] propose

to model human interactions in crowds with attractive and

repulsive forces and introduce the Social Force model of

motion. Another successful model of motion is the Optimal

Reciprocal Collision Avoidance (ORCA) model [50], which

assumes that all agents in the scene use the same collision

avoidance strategy. More recently, the community has focused

on deep learning-based approaches [6, 13, 25, 28, 35, 48, 55],

which provide flexible and computationally efficient solutions

to crowd motion forecasting. Crucially, all these lines of

research assume a fully observable state, e.g. the exact posi-

tions of all pedestrians in the scene are known [25]. While

this is a reasonable assumption for video surveillance use

cases where crowd footage is captured by a camera with top-

down view over the scene, this limits the applicability of

the methods to robotic platforms. Few of these approaches

have been demonstrated on a robot [6, 13, 28], but they first

need to accurately track pedestrians positions from the robot

perspective, usually using a combination of RGB-D images

and LiDAR scans.

Data-driven crowd trajectory prediction methods are typ-

ically composed of an interaction module to embed crowd

dynamics information in a context vector, and a decoder

to predict the next pedestrians positions. In our work we

use the encoder part of one of the state-of-the-art methods

reviewed in [25] to generate the context vector that models

crowd motion. In contrast to previous work though, accurate

pedestrians positions are only needed to train the encoder

and are not used at deployment, when the context vector is

estimated using only image data captured by the robot.

C. Learning with privileged information

Learning using privileged information [51] is a paradigm

applied to a broad range of problems. Lately it has been

successfully used for robot control [7, 23, 45, 47], where

a student policy with limited information learns to imitate

a teacher that has access to information not available at

deployment. Our work differs from these approaches in the

fact that we do not rely on an oracle policy, but we use

privileged information to model properties of the environment.

Learning with privileged information is closely connected

with the network distillation framework [20, 30], where knowl-

edge is compressed and transferred across neural networks

by setting the output of one network as target distribution

for the other network. Specifically, the use of the adaptation

network φ (Figure 2 and Section III-C2) relates to cross-modal

distillation approaches which exploit at training information

from a modality unavailable at testing e.g. by predicting this

information through an auxiliary loss. For example, Hoff-

man et al. [21] propose an object detection model with

a hallucination branch trained to mimic mid-level features

from a depth convolutional network using only RGB images.

Similar ideas have been applied into several fields such as

action recognition [18], semantic segmentation [29] and visual

question-answering [11]. While there is a clear connection

between these lines of research and the proposed adaptation

network, we are not aware of comparable approaches that

distill privileged pedestrian trajectory information into an

image-based network. Besides, the adaptation network, while

important, is only a component of the overall system.

Our approach is more closely related to recent works

on legged robot locomotion [26, 27], where an adaptation

network that uses historic robot proprioception data is trained

to reproduce a context vector representing properties of the

environment. The context vector is then processed by a policy

to generate robot controls. The idea also draws connections

with the Asymmetric Actor Critic [39] approach, where priv-

ileged information not available at test time is provided to the

critic during training. In the context of robot navigation, Choi



et al. [8] propose an Asymmetric Actor Critic agent that uses

privileged local map data to train a navigation policy using

narrow FOV depth sensor.

III. METHODS

A. Preliminaries

We consider the problem of point-goal navigation in

crowded environments. The LoCoBot follows differential drive

kinematics and its sensed state at time t, st, consists of its

linear and angular velocities st = [ẋt, ψ̇t]. The goal position is

given relative to the initial robot pose as g = [∆xg,∆yg]. The

robot is controlled with the velocity commands ut = [vt, ωt],
where vt ∈ [−vmax, vmax] controls the linear velocity, and

ωt ∈ [−ωmax, ωmax] controls the angular velocity.

The non-privileged information vector at time t is then

formed as:

nt = [dt, cos(θt), sin(θt), ẋt, ψ̇t], (1)

where dt is the Euclidean distance between the robot position

at time t and the goal, θt is the angle to the goal relative

to the robot’s heading ψt, and ẋt and ψ̇t are the robot’s

linear and angular velocities. We do not rely on any form

of localization to estimate nt but we assume that precise

odometry is available.

The robot is equipped with a front-facing RGB-D camera

with resolution 360 × 640 pixels, and the depth channel is

downsampled to 90 × 160 pixels. The objective of the robot

is to get within 0.5 m of the goal location g in the given time

budget T without colliding with pedestrians in the scene.

B. Model

The proposed model architecture is inspired by [26], with

two main differences: here the encoder µ is specifically

designed to capture pedestrians’ movements and interactions,

and it is derived from a state-of-the-art crowd modelling

encoder [48]. The adaptation network φ is designed to use

high-dimensional image data to reconstruct the context vector

ẑ, as opposed to low-dimensional input data used in [26].

1) Base policy and controller: The base policy π takes

as input the vector nt ∈ R
5 concatenated with the context

vector zt ∈ R
16, which is computed starting from privileged

information at time t. The policy π predicts the next action

based on these inputs as:

at = π(nt, µ(pt)). (2)

We use five discrete actions, MOVE_FORWARD,

MOVE_BACKWARD, TURN_LEFT, TURN_RIGHT and

STOP. The controller converts these actions to robot velocity

commands ut = [vt, ωt] by associating 80% of the LoCoBot

maximum linear or angular velocity to the corresponding

action. The policy π is implemented as a 3-layer multi-

layer perceptron (MLP) with hidden layers of size 32, and

it is trained jointly with the encoder µ by maximizing the

expected return using the Proximal Policy Optimization (PPO)

algorithm [44]. More details about the training procedures

will be presented in Section III-C1.

2) Encoder: The encoder µ is responsible for encoding the

privileged information pt about the crowd situation around

the robot. As recommended in [25], we use a non-grid based

method that uses as input the position, velocity and accel-

eration of neighbouring pedestrians relative to the robot. We

follow the approach proposed in [48] and we form the input

pt ∈ R
24 by concatenating 6-D vectors representing relative

position, velocity and acceleration of the N = 4 closest

neighbours in front of the robot within the horizontal FOV

of 90◦ and closer than 10 m. The 6-D vector corresponding

to each pedestrian is embedded using an MLP and these

embeddings are then concatenated and fed to another MLP

to generate the context vector zt ∈ R
16. We have selected

this architecture because, despite its simplicity, it is among

the best-performing methods benchmarked in [25], providing

a good trade-off between complexity and performance. While

benchmarking the best crowd trajectory prediction model is

out of the scope of this work, the modular structure of the

proposed approach allows to use any other crowd motion

prediction model. In particular, since we use the same data

structure of the TrajNet++ baselines, any alternative approach

implemented in [25] could be employed.

3) Adaptation network: The privileged information neces-

sary to encode the vector zt is not available at deployment,

hence we propose to estimate ẑt using the history of sensor

data available to the robot through its on-board camera. We

train the adaptation network φ using supervised learning in

the simulator. The network φ does not attempt to predict

the privileged information pt, but a low-dimensional repre-

sentation zt relevant to the policy π, which is a significantly

simpler task and arguably transfers better from simulation to

real-world [26]. Indeed, qualitative and quantitative results in

Section IV-C demonstrate that our approach leads to better

performance than explicitly estimating pedestrians’ tracks.

Thanks to the modularity of the approach it is possible

to use different adaptation networks without modifying the

robot control policy. For example, depending on the sensor

configuration available one can define different types of non-

privileged information. Here we propose two distinct adap-

tation models: one based on history of depth images, and

a second one that uses the history of people detections in

RGB images. We propose these modalities, as opposed to raw

RGB images, because we argue that the difference between

real and synthetically generated data is smaller in the case

of depth images or detections. Since illumination and texture

effects are not present in depth images, the reality gap is easier

to bridge than that existing between real and synthetic color

images. People detectors, like the YOLOv4 [4] used here, are

highly optimized for real-world scenes and empirically we

observe that they exhibit comparable performance in real and

simulated images. Also, since detections represent a higher

level of abstraction, intuitively networks trained on those

should transfer better from simulation to reality than networks

trained on raw images.

The first adaptation network, φD, is implemented with an

architecture inspired by the recent Video Transformer Network



(VTN) [36], which is designed to reduce training and inference

runtime while maintaining high performance of Transformer-

based methods. The input to φD is depth images ht ∈ R
90×160

(Figure 2, bottom). We use a simple CNN-based 2D spatial

backbone similar to the one proposed in [34] for feature

extraction from depth images. This network has three layers

with [num. input channels, num. output channels, kernel size,

stride] equal to [1, 32, 8, 4], [32, 64, 4, 2], [64, 32, 3, 1] respec-

tively. The output is flattened into a 1-D vector which is fed

to a temporal attention-based encoder with time window of

length 10. The encoder output is processed by an MLP head

to generate the vector ẑt ∈ R
16.

The second adaptation network, φY , features an archi-

tecture similar to the crowd encoder network µ: people are

detected using a pre-trained YOLOv4 [4] model on RGB

images captured by the robot camera. A fixed number of

N = 4 detections with largest bounding box is considered, as

we assume the largest bounding boxes to be associated to the

closest pedestrians. The detections’ bounding box height and

width, centroid and confidence are used as input ht ∈ R
16 and

embedded using an MLP. These embeddings are concatenated

and fed to another MLP to extract a feature vector that is

processed by a temporal attention-based encoder with time

window of length 10. The output is processed by an MLP

head to generate ẑt ∈ R
16.

C. Training

The models are trained on the realistic iGibson simulation

environment [53] based on the PyBullet physics engine [9] that

uses the LoCoBot URDF model and simulates joint actuation.

Dynamic pedestrian simulation is inspired by the implementa-

tion of the 2022 iGibson Social Navigation challenge [1] and

includes two motion models: pseudo-random time-correlated

motion and ORCA model of motion [50].

1) Training Phase 1, Reinforcement Learning: The first

training phase consists in learning jointly the base policy π

and the encoder network µ. This ensures that the context

vector generated by µ contains relevant information for the

policy π. We use a random number of human-like agents into

the environment. In 20% of the experiments all the agents

are static, in 20% they move according to pseudo-random

time-correlated motion and on 60% of the experiments they

move according to the ORCA policy. In all the experiments

with moving pedestrians, a random subset of those (up to

40% of the total number of pedestrians) is static. In all the

random movement simulations and in 25% of the ORCA-

controlled simulations humans do not perceive the robot, such

that we can account for possible non-cooperative behaviours.

Humans’ target speed is randomized by uniformly sampling

it for each pedestrian at each step from vped ∈ [0.2, 1.2] m/s.

All human agents are initialized in random positions in the

environment within a 10 m × 10 m square and they are given

goals in a randomized location in the same area. Once humans

reach their destination in the environment they are assigned

new random goals. The robot start and goal locations are

randomized but constrained to be at a minimum distance of

12 meters on the opposite sides of the 10 m × 10 m square

where the pedestrians move.

We train the networks using the Proximal Policy Optimiza-

tion (PPO) algorithm [44] to maximize the expected return:

J(π) = Eπ

[

T
∑

t=0

γtrt

]

, (3)

where T is the episode’s horizon, γ = 0.99 is the discount

factor and the reward rt at each time step is computed as:

rt =











0.5 if success;

−0.5 if collision;

−0.2 · rt
v + 0.1 · rt

p otherwise.

(4)

An episode is successful if the robot gets within 0.5 m of the

goal location within the time budget T = 1200 steps. rt
v is

the space violation term and equals 1 if the robot gets closer

than 0.5 m to a pedestrian and 0 otherwise. rt
p is the potential

reward that encourages the robot to move towards the goal, and

it is computed as rt
p = dt − dt−1, where dt is the Euclidean

distance between the robot and the goal at time t.

Our agents have to be able to cope with a range of crowd

densities. If the models are trained with a fixed number of

pedestrians we observe that they cannot scale effectively to

denser crowds. However, if the density of pedestrians in the

scene is randomized over a broad range of values, convergence

is slow and there is the risk to incur in catastrophic forgetting.

To overcome these limitations a standard approach, used

also in related works [26, 28], is to gradually increase the

complexity of the training environment. Using a curriculum

we train the networks π and µ for 10 million steps with a

learning rate of 1e − 4 on environments with the number of

pedestrians ñped sampled from a uniform random distribution

in the interval [0.7 · nped, 1.3 · nped]. The training starts with

nped = 5 and the number of pedestrian increases linearly every

600, 000 steps up until nped = 20.

2) Training Phase 2, Supervised Learning: In this second

phase we train the adaptation module. We use either the

past images captured by the robot depth camera or the past

pedestrian detections as input, and zt given by the encoder µ

as supervising signal. Both are available in simulation, so the

adaptation network φ can be trained via supervised learning to

minimize: MSE(zt, ẑt) = ∥zt − ẑt∥2, where zt = µ(pt). The

optimization process is run for 5 million steps, during which

the MSE loss is minimized using the Adam optimizer [24] with

a learning rate of 1e− 5. We apply geometric and appearance

image augmentation [40] both to RGB and depth images to

increase the robustness of the learned networks and facilitate

transfer to the real robot.

IV. EXPERIMENTS

We test our proposed approach, DiPCAN, on the point-goal

task in environments with moving pedestrians. As mentioned

in Section III-B3, we implement two adaptation networks

that lead to two versions of DiPCAN. DiPCAN-D uses the

adaptation network φD, trained using past depth images,



together with the base policy π trained during training phase 1.

DiPCAN-Y uses φY , trained on past person detections, with

the same base policy π.

A. Baselines

We compare DiPCAN-D and DiPCAN-Y to the following

baselines:

1) DWA: The Dynamic Window Approach (DWA) [5, 17]

is the default local planner in the ROS Navigation stack. Input

to DWA are the goal coordinates and the exact positions of

pedestrians within the robot FOV. At each step DWA rolls

out a set of feasible trajectories and selects robot commands

ut = [vt, ωt] to execute the trajectory that maximizes robot

velocity, clearance and proximity to the goal.

2) DiPCAN-P: The architecture depicted in Figure 2 (top)

uses privileged information pt about exact pedestrians position

as input to the encoder µ to generate zt. This model does not

use any adaptation network and exploits privileged information

unavailable at testing, thus representing an upper bound for

DiPCAN. In practice this architecture is very similar to the

method proposed in [28] for the pedestrian-only case that

assumes perfect pedestrian localization and tracking.

3) Recon-D: This baseline uses the DiPCAN-P architecture

just described and a reconstruction network ρD with the same

VTN architecture of φD to generate p̂t, an estimate of the

privileged pedestrian information pt. ρD is trained using the

same procedure of φD (Section III-C2). Performance com-

parison between DiPCAN-D and Recon-D sheds light on the

importance of the intermediate low-dimensional embedding zt
and substantiates the claim that it is easier to estimate such

embedding instead of the privileged information.

4) Recon-Y: Similarly, it uses the DiPCAN-P architecture

where the privileged information p̂t is estimated through a

reconstruction network ρY with the same architecture of φY .

5) PPO-D: This agent has the same base policy architec-

ture of DiPCAN (Section III-B1). The input to the policy is

nt concatenated with a context vector ẑt generated using a

sequence of depth images embedded by network ψD which

has the same VTN architecture of the adaptation network φD
(Section III-B3). The policy and embedding network ψD are

jointly trained in one phase using PPO under the same training

conditions and parameters as in our proposed approach. PPO-

D can be seen as a standard end-to-end approach that does

not use privileged information about pedestrian positions to

generate the vector ẑt. The comparison of DiPCAN-D and

PPO-D performances provides insights about the importance

of privileged information to condition the learning of the

context vector.

6) PPO-Y: This baseline has the same base policy archi-

tecture of DiPCAN. The input to the policy is nt concatenated

with the context vector generated using YOLO detections of

pedestrians by ψY , a network with the same architecture of our

proposed φY adaptation network (Section III-B3). Again, the

difference between DiPCAN-Y and PPO-Y is that the latter

is trained in one end-to-end phase without using privileged

information about pedestrian positions to generate ẑt.

(a) PPO Rewards

(b) MSE in Training Phase 2

Fig. 3: (a) Average reward over 5 random seeds (left y-axis)

for DiPCAN-P (blue), PPO-Y (magenta) and PPO-D (green).

The graphs show the average and standard deviation (shaded

areas) of the reward over 10 M training steps. The grey area

shows the curriculum progression with average number of

pedestrians increasing from 5 to 20 (right y-axis). (b) Average

MSE and standard deviation (shaded areas) over 5 random

seeds in Training Phase 2 for φD (blue) and φY (magenta).

B. Analysis of the learned components

1) RL policies: Training control policies using RL is

notoriously complex [14]. We argue that using privileged

information in DiPCAN to form a low-dimensional feature

vector to guide the policy π has a positive impact on training.

To study this hypothesis we analyze the training curves for

the PPO-D and PPO-Y models and we compare with those of

DiPCAN-P, the model trained with RL in Training Phase 1

(Section III-C1). The average reward (solid line) and its stan-

dard deviation (shaded) over 5 random seeds over the course

of training for the three architectures are shown in Figure 3a.

Rewards are recorded every 50, 000 training steps by sampling

the PPO policies, and the learning curves are smoothed by

averaging over a 5-point window. The grey shaded area on the

background shows the progression of the curriculum during

training, with the average number of pedestrians on the scene

linearly increasing from 5 to 20 every 600, 000 steps.

DiPCAN consistently achieves better overall performance

than the other architectures. The guidance provided by priv-

ileged information forms a prior that leads to substantially

stabler training and higher average rewards. PPO-D, trained

with depth images, learns reasonable policies at the beginning

of training, when very few pedestrians are present in the scene.



Method
10 pedestrians 20 pedestrians 30 pedestrians

SR ↑ STL ↑ PSC ↑ CR ↓ SR ↑ STL ↑ PSC ↑ CR ↓ SR ↑ STL ↑ PSC ↑ CR ↓

DWA 0.66 0.2369 0.9983 0.12 0.42 0.1408 0.9950 0.14 0.23 0.0746 0.9920 0.22

Recon-D 0.70 0.4918 0.9915 0.27 0.52 0.3399 0.9829 0.46 0.37 0.2269 0.9737 0.62
Recon-Y 0.39 0.2623 0.9875 0.33 0.32 0.1945 0.9832 0.45 0.23 0.1257 0.9769 0.57
PPO-D 0.36 0.1298 0.9934 0.26 0.24 0.0814 0.9905 0.41 0.18 0.0608 0.9836 0.51
PPO-Y 0.72 0.3569 0.9962 0.12 0.50 0.2199 0.9916 0.22 0.35 0.1437 0.9875 0.36

DiPCAN-D 0.84 0.5643 0.9960 0.12 0.72 0.4394 0.9918 0.21 0.55 0.3164 0.9832 0.35
DiPCAN-Y 0.76 0.5313 0.9918 0.22 0.59 0.3907 0.9040 0.37 0.42 0.2557 0.9754 0.52

DiPCAN-P 0.86 0.5836 0.9945 0.11 0.73 0.4532 0.9935 0.18 0.61 0.3462 0.9866 0.26

TABLE I: Average performance of our method and baselines over 2000 experiments in environments with 10, 20 and 30

pedestrians. Best performance is highlighted in bold and the second-best in blue. Baselines and experimental settings are

described in Section IV-A and IV-C respectively. The proposed DiPCAN-D and -Y approaches outperform the alternatives

while exhibiting small performance degradation compared to DiPCAN-P which has access to privileged information.

With the number of pedestrians increasing, PPO-D fails to

converge to a meaningful policy. PPO-Y, which is trained

starting from much lower dimensional features representing

people detections, exhibits significantly better performance

than PPO-D, however the variance of the obtained rewards

is large and rewards are lower than DiPCAN across all seeds.

2) Adaptation networks: For each of the five DiPCAN-P

models we train adaptation networks φD and φY distilling the

corresponding µ encoders. Figure 3b shows the average and

standard deviation (shaded areas) of the MSE achieved during

Training Phase 2 for φD (blue) and φY (magenta). The adapta-

tion network using depth images consistently approximate the

embedding zt with lower error, leading to better performance

of the corresponding DiPCAN-D model, as shown in Table I.

C. Simulation experiments

We test the proposed method and the baselines on en-

vironments with an average number of pedestrians nped ∈
{10, 20, 30} with nped = 30 featuring significantly denser

crowds than those encountered during training. The exper-

imental setting is the same as for training: in 20% of the

experiments agents are static, in 20% they move according

to pseudo-random motion and in 60% of the experiments they

move according to the ORCA policy. In all the experiments a

random subset of pedestrians is static, and in all the random

movement simulations and 25% of the ORCA-controlled sim-

ulations the humans do not perceive the robot. The pedestrians’

target speed is sampled over a broader range than at training,

with vped ∈ [0.1, 1.4] m/s.

In order to quantify the performance of the navigation

agents, we compare them based on the following metrics:

• Success Rate (SR), the percentage of episodes in which

the robot succeeds to reach the goal without collision.

• Success weighted by Time Length (STL) [1], computed

as:

STL =
1

N

N
∑

i=1

Si

pi

max(pi, ti)
,

where N is the number of episodes, Si is a binary

indicator of success in episode i and ti is the length of

the path taken by the agent in the episode. In [1] all

pedestrians follow an ORCA policy and pi is the time

taken by an ORCA agent to reach the goal. Since not all

our experiments involve ORCA agents and there is no

obvious way to set an oracle policy, we fix the value of

pi to 400, which is a lower bound of the timesteps taken

by any agent tested in our experiments to reach the goal.

• Personal Space Compliance (PSC) [1], the percentage

of time steps in which the robot complies with pedes-

trians’ personal space set as 0.5 m radius around each

human-like agent.

• Collision Rate (CR), the percentage of episodes in which

the robot collides with a pedestrian.

The intuition behind the use of these metrics is that an agent

needs to balance between taking as little time as possible

to reach the goal (high STL) and incurring less personal

space violation to the pedestrians (high PSC), while avoiding

collisions (low CR).

Table I shows results for the proposed methods, DiPCAN-

D and DiPCAN-Y, and for the baselines presented in Sec-

tion IV-A in environments with an average of 10, 20 and

30 pedestrians. For each setting we perform the same 400

experiments. For DWA, scores are averaged over these 400

experiments. For the other methods, the reported values are

averaged over 2000 experiments, i.e. 400 runs for each of

the randomly initialized policies in Figure 3a: PPO-D, PPO-

Y and DiPCAN-P. Recon-D and Recon-Y use the DiPCAN-

P architecture and estimate the privileged input using the

networks ρD and ρY respectively. DiPCAN-D and DiPCAN-

Y use the base policy π of DiPCAN-P, but the context vector

is generated by φD and φY respectively. Best performance is

highlighted in bold and second-best in blue.

The proposed approaches, DiPCAN-D and DiPCAN-Y,

clearly outperform alternative baselines in terms of success

rate and speed to get to the goal, while achieving a good

compromise in terms of safety and pedestrian comfort. Re-

markably, performance degradation compared to DiPCAN-

P is small, especially for DiPCAN-D that uses depth im-

ages. DiPCAN-D achieves better navigation metrics than

DiPCAN-Y, arguably because the adaptation network φD



Fig. 4: Example results of robots controlled by DWA (column 1), Recon-D (column 2), PPO-Y (column 3) and the proposed

DiPCAN-Y, -D and -P agents (columns 4, 5 and 6 respectively) navigating from their start position (■ on the left side of each

sub figure) to the goal (⋆ on the right). The robot trajectory is drawn in black while pedestrians trajectories are colored, with

thickness and opacity increasing with time. Each row shows results for a different experimental setup, detailed on the left.

approximates the context vector better than φY (see Figure 3b).

As mentioned earlier, DiPCAN-P is very similar to the

approach proposed by Liu et al. [28], and performance is

indeed in line with one reported in [28], where their state-of-

the-art navigation method that uses exact pedestrian tracking

achieves 87% success rate on environments with on average

10 pedestrians.

As expected, DWA, that uses privileged exact information

about pedestrians positions, runs a conservative strategy with

low collision rates, but it clearly fails to successfully navigate

in the more intricate scenarios.

Recon-D and Recon-Y make use of the DiPCAN-P model,

thus the performance degradation is caused by estimation

errors of pedestrian state estimation that propagate downstream

in unpredictable ways, leading to low performance and notably

high collision rates.

As pointed out in Section IV-B, we did not manage to

train a meaningful control policy using the end-to-end PPO-

D model. This is reflected in the poor results displayed in

Table I. PPO-Y achieves significantly better scores than PPO-

D, but still average performance is lower than that of DiPCAN

methods, especially in complex scenarios. From these results

it appears clear that capturing the underlying crowd dynamics

using the context vector and learning to reproduce such context

from images brings considerable benefits.

Example results of the baselines and proposed approaches

are shown in Figure 4. We omit results for Recon-Y and PPO-

D because these agents do not lead to meaningful control poli-

cies. In each panel the robot trajectory is drawn in black while

pedestrian trajectories are colored, and their thickness and

opacity increase with time. Colored dots pinpoint the positions

of static pedestrians. The robot start and target positions are

indicated with a red square and a green star respectively. The

first row shows trajectories for a relatively simple environment

with 8 static human-like agents. All agents but Recon-D

(column 2) reach the goal: DWA (column 1) follows a very

efficient trajectory, PPO-Y (column 3) reaches the target with

a slightly longer path, and the DiPCAN models (columns 4,

5 and 6) follow closely the optimal DWA trajectory. Recon-D

collides with a pedestrian, likely because of a distance estima-

tion error. This example shows the drawback of the “classic”

pipeline that first estimates the state of neighbouring obstacles

and then plans the robot motion based on potentially faulty

estimates. The second row displays results for an environment

with 23 static pedestrians. This time only the DiPCAN-D and

DiPCAN-Y agents manage to reach the goal, while surpris-

ingly the policy with access to privileged information about

exact people locations, DiPCAN-P, gets the robot stuck in

between several pedestrians. On average DiPCAN-P performs

slightly better than its non-privileged counterparts (see Table

I), but it is interesting to observe the skills that the DiPCAN

agents learn for navigating in such complex setting. The third

row of figures shows results for an experiment with pedestrians

moving according to an ORCA policy. The DiPCAN agents



swiftly reach the goal, the PPO-Y agent achieves the result

in a significantly longer time. The cautious DWA agent does

not reach the goal in the assigned time budget of 1800 steps

while the Recon-D agent collides with a moving pedestrian

while backtracking. The fourth row displays trajectories for

an environment with randomly-moving human agents that do

not see the robot. Again the DiPCAN agents quickly get to the

target location. DWA and PPO-Y struggle to navigate is such

complex scenario and ultimately collide with uncooperative

pedestrians that do not perceive the robot. Recon-D reaches the

goal in this example, but performs an apparently unmotivated

backing motion at the beginning of the trajectory. Additional

results for the proposed DiPCAN-D agent in challenging

scenarios with an average of 30 pedestrians can be viewed

at https://europe.naverlabs.com/research/dipcan.

D. Experiments with noisy odometry

The proposed approach makes use of ground-truth robot

odometry available in simulation. Since location, velocity

and acceleration of obstacles are not explicitly estimated, the

odometry precision should not have a significant impact on

navigation results. Additionally, the trained system optimizes

the minimum amount of information necessary for taking

decisions and should be little sensitive to faulty odometry. To

validate these intuitions we test DiPCAN-D on noisy envi-

ronments. Gaussian noise N (0, σ2

v) proportional to the robot

velocities is added to ground-truth readings, with σv = mv ·v,

v the exact linear or angular velocity and mv ∈ {0.1, 0.2}.

Gaussian noise with standard deviation σl = 30 cm is also

added to the robot ground-truth xy position. Using the same

protocol described above we run 2000 experiments on environ-

ments with 20 pedestrians. Average performance of DiPCAN-

D with exact and noisy odometry, displayed in Table II, shows

that navigation metrics are not degraded by severe odometry

perturbations.

Noise conditions SR ↑ STL ↑ PSC ↑ CR ↓

No noise 0.72 0.4394 0.9918 0.21
σv = 0.1 · v, σl = 30 cm 0.72 0.4442 0.9870 0.21
σv = 0.2 · v, σl = 30 cm 0.73 0.4488 0.9908 0.21

TABLE II: Average performance of DiPCAN-D using ground-

truth (first row) and noisy odometry (second and third rows).

E. Robot experiments

The proposed DiPCAN-D architecture is deployed and

demonstrated on a LoCoBot robot [2]. As shown in Figure 1,

the robot has to reach a target position located at a distance of

6 m along the robot x axis with respect to the starting robot

pose. The system requires two inputs: nt (Eq. (1)) and depth

images that are processed by the adaptation network φD to

generate ẑt. The vector nt is computed using the robot wheel

odometry, while depth images are captured by the onboard In-

tel RealSense D435 RGB-D camera with resolution 360×640
pixels and downsampled to 90 × 160. All computations are

executed on the embedded Intel NUC with an i3-8109U CPU

and 8GB Ram. We use the same π and φD networks trained

in simulation and we only manually tune the velocity values

that the controller associates to discrete actions. Additionally,

velocity commands are smoothed by an exponential moving

average filter with α = 0.3 to achieve a safe robot behaviour.

Robot controls are sent at a frequency of 10 Hz.

The videos at https://europe.naverlabs.com/research/dipcan

show the behaviour of the LoCoBot controlled by the

DiPCAN-D architecture in different settings. The navigation

experiments demonstrate how the learned policy drives the

robot towards its goal across dense crowds. The robot exhibits

a range of behaviours to deal with these complex scenarios:

it patiently waits and grabs opportunities to get clear paths,

turns around to find promising trajectories towards the goal,

backs off to leave space for pedestrians and avoids collisions

even when people suddenly block its path.

V. CONCLUSIONS

In this work we present a novel architecture for pedestrian

collision avoidance in dense crowds using only narrow FOV

camera inputs. The navigation policy is trained distilling

privileged information about pedestrian positions in a low-

dimensional context vector that is reconstructed at test time

using image data from the robot onboard camera. The policies

are learned from scratch without expert supervision such

as predefined trajectories computed by a planner, and they

exhibit state-of-the-art performance and remarkable navigation

competence on a broad range of dense crowd experiments in

simulation and real-world. The approach is modular and allows

for further exploration of different crowd trajectory modelling

techniques or adaptation network strategies without having to

modify other parts of the system.

One obvious limitation of the proposed approach is that

it only works in open spaces. A reliable, realistic navigation

agent needs to be able to cope equally well with pedestrians

and with environmental elements such as walls, furniture

and other obstacles. One promising direction that we plan to

explore is to combine multiple navigation experts, learned or

not, using a hybrid modular approach such as the one proposed

by Dashora et al. [10].

REFERENCES

[1] iGibson challenge 2022. URL http://svl.stanford.edu/

igibson/challenge.html.

[2] LoCoBot, an open source low cost robot. URL http:

//www.locobot.org/.

[3] Maren Bennewitz, Wolfram Burgard, Grzegorz Cielniak,

and Sebastian Thrun. Learning motion patterns of people

for compliant robot motion. The International Journal

of Robotics Research, 24(1):31–48, 2005.

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934, 2020.

[5] Wolfram Burgard, Armin B Cremers, Dieter Fox, Dirk

Hähnel, Gerhard Lakemeyer, Dirk Schulz, Walter Steiner,

https://europe.naverlabs.com/research/dipcan
https://europe.naverlabs.com/research/dipcan
http://svl.stanford.edu/igibson/challenge.html
http://svl.stanford.edu/igibson/challenge.html
http://www.locobot.org/
http://www.locobot.org/


and Sebastian Thrun. The interactive museum tour-guide

robot. In Aaai/iaai, pages 11–18, 1998.

[6] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexan-

dre Alahi. Crowd-robot interaction: Crowd-aware

robot navigation with attention-based deep reinforcement

learning. In 2019 International Conference on Robotics

and Automation (ICRA), pages 6015–6022. IEEE, 2019.

[7] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp

Krähenbühl. Learning by cheating. In Conference on

Robot Learning, pages 66–75. PMLR, 2020.

[8] Jinyoung Choi, Kyungsik Park, Minsu Kim, and Sangok

Seok. Deep reinforcement learning of navigation in a

complex and crowded environment with a limited field

of view. In 2019 International Conference on Robotics

and Automation (ICRA), pages 5993–6000. IEEE, 2019.

[9] Erwin Coumans and Yunfei Bai. PyBullet, a python

module for physics simulation in robotics, games and

machine learning, 2016–2019. URL https://pybullet.org/.

[10] Nitish Dashora, Daniel Shin, Dhruv Shah, Henry

Leopold, David Fan, Ali Agha-Mohammadi, Nicholas

Rhinehart, and Sergey Levine. Hybrid imitative plan-

ning with geometric and predictive costs in off-road

environments. NeurIPS Deep Reinforcement Learning

Workshop, 2021.

[11] Tuong Do, Thanh-Toan Do, Huy Tran, Erman Tjipu-

tra, and Quang D Tran. Compact trilinear interaction

for visual question answering. In Proceedings of the

IEEE/CVF International Conference on Computer Vi-

sion, pages 392–401, 2019.

[12] Noel E Du Toit and Joel W Burdick. Robot motion

planning in dynamic, uncertain environments. IEEE

Transactions on Robotics, 28(1):101–115, 2011.

[13] Michael Everett, Yu Fan Chen, and Jonathan P How.

Collision avoidance in pedestrian-rich environments with

deep reinforcement learning. IEEE Access, 9:10357–

10377, 2021.

[14] Ben Eysenbach, Russ R Salakhutdinov, and Sergey

Levine. Robust predictable control. Advances in Neural

Information Processing Systems, 34, 2021.

[15] Tingxiang Fan, Xinjing Cheng, Jia Pan, Pinxin Long,

Wenxi Liu, Ruigang Yang, and Dinesh Manocha. Getting

robots unfrozen and unlost in dense pedestrian crowds.

IEEE Robotics and Automation Letters, 4(2):1178–1185,

2019.

[16] Franck Feurtey. Simulating the collision avoidance

behavior of pedestrians. Master’s thesis, University of

Tokyo, Department of Electronic Engineering, 2000.

[17] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The

dynamic window approach to collision avoidance. IEEE

Robotics & Automation Magazine, 4(1):23–33, 1997.

[18] Nuno C Garcia, Pietro Morerio, and Vittorio Murino.

Modality distillation with multiple stream networks for

action recognition. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 103–118,

2018.

[19] Dirk Helbing and Peter Molnar. Social force model

for pedestrian dynamics. Physical review E, 51(5):4282,

1995.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling

the knowledge in a neural network. NIPS Deep Learning

and Representation Learning Workshop, 2014.

[21] Judy Hoffman, Saurabh Gupta, and Trevor Darrell.

Learning with side information through modality hal-

lucination. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 826–

834, 2016.

[22] Jun Jin, Nhat M Nguyen, Nazmus Sakib, Daniel Graves,

Hengshuai Yao, and Martin Jagersand. Mapless navi-

gation among dynamics with social-safety-awareness: a

reinforcement learning approach from 2d laser scans. In

2020 IEEE International Conference on Robotics and

Automation (ICRA), pages 6979–6985. IEEE, 2020.

[23] Elia Kaufmann, Antonio Loquercio, René Ranftl,

Matthias Müller, Vladlen Koltun, and Davide Scara-

muzza. Deep drone acrobatics. In Proceedings of

Robotics: Science and Systems, Corvalis, Oregon, USA,

July 2020. doi: 10.15607/RSS.2020.XVI.040.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In 3rd International Conference

on Learning Representations, ICLR 2015, 2015. URL

http://arxiv.org/abs/1412.6980.

[25] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human

trajectory forecasting in crowds: A deep learning per-

spective. IEEE Transactions on Intelligent Transporta-

tion Systems, 2021.

[26] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra

Malik. RMA: Rapid motor adaptation for legged robots.

In Robotics: Science and Systems XVII, Virtual Event,

July 12-16, 2021, 2021.

[27] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,

Vladlen Koltun, and Marco Hutter. Learning quadrupedal

locomotion over challenging terrain. Science robotics, 5

(47), 2020.

[28] Lucia Liu, Daniel Dugas, Gianluca Cesari, Roland Sieg-

wart, and Renaud Dubé. Robot navigation in crowded

environments using deep reinforcement learning. In 2020

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 5671–5677. IEEE, 2020.

[29] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo

Luo, and Jingdong Wang. Structured knowledge distil-

lation for semantic segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2604–2613, 2019.

[30] David Lopez-Paz, Léon Bottou, Bernhard Schölkopf,

and Vladimir Vapnik. Unifying distillation and priv-

ileged information. In 4th International Conference

on Learning Representations, ICLR 2016, 2016. URL

https://arxiv.org/abs/1511.03643.

[31] Björn Lütjens, Michael Everett, and Jonathan P How.

Safe reinforcement learning with model uncertainty es-

timates. In 2019 International Conference on Robotics

and Automation (ICRA), pages 8662–8668. IEEE, 2019.

https://pybullet.org/
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1511.03643


[32] Steve Macenski, Francisco Martı́n, Ruffin White, and

Jonatan Ginés Clavero. The marathon 2: A navigation

system. In 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 2718–2725.

IEEE, 2020.

[33] Christoforos Mavrogiannis, Francesca Baldini, Allan

Wang, Dapeng Zhao, Pete Trautman, Aaron Steinfeld,

and Jean Oh. Core Challenges of Social Robot Nav-

igation: A Survey. ArXiv, Mar 2021. URL https:

//arxiv.org/abs/2103.05668v2.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,

Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland,

Georg Ostrovski, Stig Petersen, Charles Beattie, Amir

Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-

maran, Daan Wierstra, Shane Legg, and Demis Hassabis.

Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529–533, February 2015. URL

http://dx.doi.org/10.1038/nature14236.

[35] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny,

and Christian Claudel. Social-stgcnn: A social spatio-

temporal graph convolutional neural network for human

trajectory prediction. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 14424–14432, 2020.

[36] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan

Asselmann. Video transformer network. In Proceedings

of the IEEE/CVF International Conference on Computer

Vision (ICCV) Workshops, pages 3163–3172, October

2021.

[37] Claudia Pérez-D’Arpino, Can Liu, Patrick Goebel,

Roberto Martı́n-Martı́n, and Silvio Savarese. Robot

navigation in constrained pedestrian environments using

reinforcement learning. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages

1140–1146. IEEE, 2021.

[38] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland

Siegwart, and Cesar Cadena. From perception to de-

cision: A data-driven approach to end-to-end motion

planning for autonomous ground robots. In 2017 IEEE

International Conference on Robotics and Automation

(ICRA), pages 1527–1533. IEEE, 2017.

[39] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wo-

jciech Zaremba, and Pieter Abbeel. Asymmetric actor

critic for image-based robot learning. RSS, 2018.

[40] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan

Rublee, and Gary Bradski. Kornia: an open source

differentiable computer vision library for pytorch. In

Winter Conference on Applications of Computer Vision,

2020. URL https://arxiv.org/pdf/1910.02190.pdf.

[41] Christoph Rösmann, Frank Hoffmann, and Torsten

Bertram. Integrated online trajectory planning and op-

timization in distinctive topologies. Robotics and Au-

tonomous Systems, 88:142–153, 2017.

[42] Andrey Rudenko, Luigi Palmieri, Michael Herman,

Kris M Kitani, Dariu M Gavrila, and Kai O Arras.

Human motion trajectory prediction: A survey. The

International Journal of Robotics Research, 39(8):895–

935, 2020.

[43] Adarsh Jagan Sathyamoorthy, Jing Liang, Utsav Patel,

Tianrui Guan, Rohan Chandra, and Dinesh Manocha.

Densecavoid: Real-time navigation in dense crowds using

anticipatory behaviors. In 2020 IEEE International

Conference on Robotics and Automation (ICRA), pages

11345–11352. IEEE, 2020.

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

Radford, and Oleg Klimov. Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347, 2017.

[45] Maks Sorokin, Jie Tan, C. Karen Liu, and Sehoon Ha.

Learning to navigate sidewalks in outdoor environments,

2021.

[46] Lei Tai, Jingwei Zhang, Ming Liu, and Wolfram Burgard.

Socially compliant navigation through raw depth inputs

with generative adversarial imitation learning. In 2018

IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 1111–1117. IEEE, 2018.

[47] Varun Tolani, Somil Bansal, Aleksandra Faust, and Claire

Tomlin. Visual navigation among humans with optimal

control as a supervisor. IEEE Robotics and Automation

Letters, 6(2):2288–2295, 2021. doi: 10.1109/LRA.2021.

3060638.

[48] Antoine Tordeux, Mohcine Chraibi, Armin Seyfried,

and Andreas Schadschneider. Prediction of pedestrian

dynamics in complex architectures with artificial neural

networks. Journal of intelligent transportation systems,

24(6):556–568, 2020.

[49] Pete Trautman, Jeremy Ma, Richard M Murray, and

Andreas Krause. Robot navigation in dense human

crowds: Statistical models and experimental studies of

human–robot cooperation. The International Journal of

Robotics Research, 34(3):335–356, 2015.

[50] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh

Manocha. Reciprocal n-body collision avoidance. In

Robotics research, pages 3–19. Springer, 2011.

[51] Vladimir Vapnik and Akshay Vashist. A new learning

paradigm: Learning using privileged information. Neural

networks, 22(5-6):544–557, 2009.

[52] Patrick Wenzel, Torsten Schön, Laura Leal-Taixé, and

Daniel Cremers. Vision-based mobile robotics obstacle

avoidance with deep reinforcement learning. In 2021

IEEE International Conference on Robotics and Automa-

tion (ICRA), 2021.

[53] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg,

Micael Edmond Tchapmi, Alexander Toshev, Roberto

Martı́n-Martı́n, and Silvio Savarese. Interactive Gibson

benchmark: A benchmark for interactive navigation in

cluttered environments. IEEE Robotics and Automation

Letters, 5(2):713–720, 2020.

[54] Linhai Xie, Sen Wang, Andrew Markham, and Niki

Trigoni. Towards monocular vision based obstacle

avoidance through deep reinforcement learning. In RSS

2017 workshop on New Frontiers for Deep Learning in

https://arxiv.org/abs/2103.05668v2
https://arxiv.org/abs/2103.05668v2
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/pdf/1910.02190.pdf


Robotics, 2017.

[55] Dapeng Zhao and Jean Oh. Noticing motion patterns:

A temporal cnn with a novel convolution operator for

human trajectory prediction. IEEE Robotics and Automa-

tion Letters, 6(2):628–634, 2020.

[56] Brian D Ziebart, Nathan Ratliff, Garratt Gallagher,

Christoph Mertz, Kevin Peterson, J Andrew Bagnell,

Martial Hebert, Anind K Dey, and Siddhartha Srini-

vasa. Planning-based prediction for pedestrians. In 2009

IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 3931–3936. IEEE, 2009.


	Introduction
	Related Work
	Navigation with pedestrian collision avoidance
	Crowd trajectory prediction
	Learning with privileged information

	Methods
	Preliminaries
	Model
	Base policy and controller
	Encoder
	Adaptation network

	Training
	Training Phase 1, Reinforcement Learning
	Training Phase 2, Supervised Learning


	Experiments
	Baselines
	DWA
	DiPCAN-P
	Recon-D
	Recon-Y
	PPO-D
	PPO-Y

	Analysis of the learned components
	RL policies
	Adaptation networks

	Simulation experiments
	Experiments with noisy odometry
	Robot experiments

	Conclusions

