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Abstract—This paper extends recent work in demonstrating
magnetic manipulation of conductive, nonmagnetic objects using
rotating magnetic dipole fields. The current state of the art
demonstrates dexterous manipulation of solid copper spheres
with all object parameters known a priori. Our approach expands
the previous model that contained three discrete modes to a
single, continuous model that covers all possible relative positions
of the manipulated object relative to the magnetic field source.
We further leverage this new model to examine manipulation of
spherical objects with unknown physical parameters, by applying
techniques from the online-optimization and adaptive-control
literature. Our experimental results validate our new dynamics
model, showing that we get comparable or improved performance
to the previously proposed model, while solving a simpler
optimization problem for control. We further demonstrate the
first physical magnetic control of aluminum spheres, as previous
controllers were only physically validated on copper spheres.
We show that our adaptive control framework can quickly
acquire accurate estimates of the true spherical radius when
weakly initialized, enabling control of spheres with unknown
physical properties. Finally, we demonstrate that the spherical-
object model can be used as an approximate model for adaptive
control of nonspherical objects by performing the first magnetic
manipulation of nonspherical, nonmagnetic objects.

I. INTRODUCTION

There have been significant advances on the topic of mag-
netic manipulation over the past decade, the vast majority
coming from the robotics community [1]. Researchers have
developed methods to use sets of stationary electromagnets,
or robot-controlled permanent magnets, to dexterously manip-
ulate both tethered and untethered devices without any direct
physical contact. However, the objects being manipulated have
typically comprised a large fraction of ferromagnetic material
(soft- or permanent-magnet). This severely limits the types of
objects that can be manipulated using magnetic methods that
are based on ferromagnetism, since ultimately a very limited
set of materials exhibit ferromagnetism.

Many engineering materials, although not ferromagnetic, are
electrically conductive, including aluminum, titanium, copper,
and some stainless steels. It has long been known that when
conductive objects are exposed to time-varying magnetic fields
(as opposed to static magnetic fields), a flow of electrons
known as eddy currents is induced in the material [5]. These

Fig. 1: Example trajectory—the University of Utah “Block U”—
produced using the proposed continuous-position force-torque model.
The red line represents position over time (72 minutes) traced by the
center of a 20-mm-diameter copper sphere. In this planar simulation
of microgravity, the copper sphere is placed in a raft that floats with
3-DOF mobility on the surface of water, with four electromagnetic
field sources placed beneath the water tank. The pose of the raft is
tracked with a camera using a fiducial marker. The positions of the
field sources and the copper sphere are rendered in the image at true
scale and with perspective; they are obstructed in the actual video.

eddy currents produce their own magnetic fields, which then
interact with the applied magnetic field, inducing forces and
torques on the conductive object. A common commercial
applications of this phenomenon is material separation in metal
recycling plants [24].

The use of eddy-current-induced forces and/or torques for
applications in space is a particularly promising and active
area of research. This arises in part by the benefit of non-
contact actuation in reducing the chances of destructive col-



lision compared to contact-based approaches, and is further
motivated by the large quantities of aluminum in engineered
space objects [14]. For example, eddy-current-induced forces
have been proposed as a method of traversing the exterior
of the International Space Station [20, 26, 27, 28]. We are
particularly interested in contributing solutions to the problem
of space debris [7, 21, 10, 11]. A study found that “even if no
future launches occurred, collisions between existing satellites
would increase the 10-cm and larger debris population faster
than atmospheric drag would remove objects” [11]. This
will eventually lead to a phenomenon known as the Kessler
Syndrome [6], in which Earth’s orbit becomes clogged with
debris due to cascading collisions between objects, making
it unusable. As such, there is a dire need for remediation
strategies to remove or repair resident space objects in order to
protect the fast-growing number of satellites that the world’s
population has grown to rely on [11]. The majority of prior
efforts have focused on eddy-current breaking for detumbling
satellites [15, 25, 8, 13].

We recently showed that full six-degree-of-freedom (6-
DOF) dexterous manipulation of conductive, nonmagnetic
objects (specifically spheres) utilizing eddy currents is, in
fact, possible [17]. The method assumes that the object is
surrounded by static electromagnet field sources capable of
generating continuously rotating magnetic dipole fields about
arbitrary axes. It is noteworthy that the resulting manipulation
was in full 6-DOF, whereas 6-DOF manipulation of ferro-
magnetic objects is only possible for complex geometries [3],
with 5-DOF typical of most simple geometries, and only 3-
DOF achievable for soft-magnetic spheres [1]. The forces and
torques induced on conductive, nonmagnetic spheres are small
compared to those due to ferromagnetism, but they have the
potential to be useful for applications in the microgravity
environment of space.

In this paper, we make five contributions relative to our
earlier work [17], motivated by manipulation of space debris:

1) Pham et al. [17] modeled eddy-current-induced force-
torque at three distinct canonical positions of a nonmagnetic,
conductive sphere with respect to a rotating dipole: along the
rotation axis of the rotating dipole (parallel and antiparallel)
and orthogonal to the axis of rotation. Here, we provide a
single, continuous model of force-torque across all positions
of the conductive sphere relative to the rotating dipole.

2) Pham et al. [17] used the canonical-position model
in a manipulation framework, which forced the conductive
sphere to be cast into one of the three canonical positions
during actuation. Although this method was sufficient to
enable 6-DOF manipulation (provided there were enough
dipole-field sources), it unnecessarily constrained the dipole
rotation axes that could be used, making the results sub-
optimal. Here, we modify the manipulation framework to
use the new continuous-position model, and show improved
tracking performance to that of [17], while solving a simpler
optimization problem. Figure 1 shows an example trajectory
experimentally generated with our improved method.

3) Pham et al. [17] assumed that object dynamics models

were accurately known. As a step toward manipulation of un-
known space debris, we propose an approach to manipulating
spheres with unknown physical parameters (i.e., radius and
conductivity) through the use of adaptive control. We leverage
the recently proposed view of adaptive control as online
optimization [19]. This enables us to more closely tie adaptive
control to classical system identification [2], while also making
use of exciting advances in online optimization [4] such as
solvers that are robust to noise while also handling constraints
and injecting prior knowledge of system parameters.

4) Pham et al. [17] only physically manipulated copper
spheres. Here, we use the adaptive controller to enable the first
physical demonstration of manipulation of aluminum spheres;
aluminum is the most commonly used material in engineered
space objects.

5) Pham et al. [17] developed a model for induced force-
torque on nonmagnetic, conductive spheres, which was hy-
pothesized to be a useful approximation for other geometries.
Here, we demonstrate that our adaptive controller can be used
to manipulate nonspherical, nonmagnetic, conductive objects
by locally approximating the dynamics using the model for
spheres. This constitutes the first demonstration of magnetic
manipulation of nonspherical, nonmagnetic objects.

The paper structure continues as follows. We review the
existing state-of-the-art force-torque model in Sec. II. We
provide an explanation of our proposed continuous-position
force-torque model in Sec. III. We discuss our manipulation
framework in Sec. IV. We then detail our approach to object
parameter optimization, both as system identification and
adaptive control, in Sec. V. We share our experimental design
and results in Sec. VI before concluding in Sec. VII.

II. REVIEW OF EXISTING FORCE-TORQUE MODEL

In this section, we summarize the model of Pham et al.
[17]. However, we recast the model into spherical coordinates,
which we have found enables an elegant way to extend the
existing model to new, previously unmodeled locations.

The magnetic field source can be abstracted as a point
dipole mmm (units A·m2, with direction pointing from the south
pole to the north pole) at its center of mass. The center of
the nonmagnetic conductive sphere is then described by a
relative displacement vector ρρρ , with both vectors expressed
in a common frame of reference. Figure 2 shows the new
spherical coordinate system, where any given position can be
described by three coordinates with respect to the rotating
magnetic dipole: a distance ρ = ‖ρρρ‖, a polar angle θ measured
from the dipole’s rotation vector ωωω , and an azimuthal angle φ

measuring a right-handed rotation about ωωω . In this coordinate
system, the three canonical positions from [17] are described
by θ = 0◦, θ = 90◦, and θ = 180◦.

The eddy-current-induced force f and torque τ was em-
pirically modeled, using both finite-element analysis (FEA)
and experiments, at the three canonical positions as a function
of the magnetic dipole strength m = ‖mmm‖, the dipole rotation
frequency ω = ‖ωωω‖ (units Hz), the radius r (units m) of



τρ

fφ

τθ

θ

ω
NS

fρ

fρ

f ? τ?

τρ
fρ

îρ

îθ

θ=180°

θ=0°

θ=90°

Fig. 2: Eddy-current-induced forces and torques shown in a spherical
coordinate system to describe arbitrary positions relative to a rotating
dipole source. Note that îφ = îρ × îθ . The three canonical positions
in [17], and their respective forces and torques, are recast in the
spherical coordinate system. The arrowhead on τττρ at 180◦ depicts
the positive sign convention, which is opposite to the actual torque
direction for the ωωω shown. All other force/torque arrowheads depict
both the positive sign convention and the actual force/torque direction
for the ωωω shown. The model makes no estimate of force/torque at
other positions, such as those denoted by f ??? and τττ???.

the conductive sphere, the distance ρ , and the electrical
conductivity σ (units S/m) of the conductive sphere:

f ,τ =

(
c0σ µ0ωr2

)c1(σ µ0ωr2)
c2

10c3
(
µ0m2

)(
ρ

r

)c4 rc5
(1)

where µ0 = 4π×10−7 N·A−2 is the permeability of free space.
The coefficients for the θ = 0◦ and θ = 90◦ positions—
which is all that we will need going forward, due to the
symmetry of θ = 0◦ and θ = 180◦—are provided in Table I.
Pham et al. [17] recommended using both the experimentally
derived coefficients and FEA-derived coefficients to bound the
estimates on the resulting force and torque. The force-torque
model is quasistatic, as it was empirically derived using a static
conductive sphere.

The model in Eq. (1) is accurate in a “far-field” regime in
which the center of the nonmagnetic sphere is approximately
1.5 sphere radii or farther away from the center of the magnetic
field source (ρ > 1.5r). This is not a particularly restrictive
assumption, considering that the theoretical lower limit on ρ

is ρ = r (for a point dipole) and any actual magnetic field
source has its own finite dimensions. In the “near-field” regime
(ρ ≤ 1.5r), the model Eq. (1) underpredicts the force-torque
magnitude, and as such is in a sense conservative. In practice,
the near-field regime applies to scenarios in which the physical
magnetic field source is close to a much larger nonmagnetic,
conductive object.

III. CONTINUOUS MODEL OF INDUCED FORCE & TORQUE

In this section, we expand the force-torque model from
the previous section to arbitrary locations (but still in the

TABLE I: Coefficients from [17] for model in Eq. (1) for canonical
positions, recast in spherical coordinates; see Fig. 2

.

FEA Simulations

θ f , τ
Coefficients

c0 c1 c2 c3 c4 c5
0◦ fρ 430 2.95 −0.101 −9.26 7 4
0◦ τρ 6840 3.00 −0.0986 −13.2 6 3
90◦ fρ 266 2.60 −0.101 −7.65 7 4
90◦ fφ 6040 3.45 −0.102 −14.3 7 4
90◦ τθ 8100 3.60 −0.0985 −15.7 6 3

Experiments

θ f , τ
Coefficients

c0 c1 c2 c3 c4 c5
0◦ fρ 467 2.81 −0.0969 −9.75 7 4
0◦ τρ 6900 3.35 −0.0990 −14.9 6 3
90◦ fρ 282 3.20 −0.0980 −9.41 7 4
90◦ fφ 5870 3.49 −0.0973 −14.6 7 4
90◦ τθ 8000 3.40 −0.0928 −15.0 6 3

far-field regime) of a conductive sphere in a rotating dipole
field. Our guiding hypothesis is that there will exist simple
(likely trigonometric) functions of θ that will enable us to
(nonlinearly) interpolate the modeling results in the three
canonical positions, such that no further modeling of the type
given in Eq. (1) will need to be conducted.

We conducted new simulations of magnetically induced
forces using Ansys multiphysics FEA, following the speci-
fications provided in [17] (see Appendix A). We placed the
conductive sphere relative to the rotating dipole source from
θ = 0◦ to θ = 180◦ at 15◦ increments, as shown in Figs. 3(a)
and 3(c). Our simulation had a dipole strength m = 200 A·m2,
a dipole rotation frequency ω = 10 Hz, a conductive-sphere
radius r = 50 mm, a distance ρ = 500 mm, and conductive-
sphere electrical conductivity of σ = 5.8×107 S/m for copper.

The complete results of the FEA are shown in Fig. 3,
with the exception that components in the îφ direction are
not depicted in Figs. 3(a) and 3(c). From these results, it
became evident that all six force and torque components can
be expressed by simple trigonometric functions that provide
a smooth transition between the modeled forces and torques
at the three canonical positions to arbitrary values of θ , and
that also embody the symmetries that we would expect. The
equations that describe the force and torque components in
spherical coordinates—at arbitrary values of ρ and θ , and
not requiring φ due to symmetry—which call the canonical-
position model of Eq. (1), are as follows:

fρ(ρ,θ) =−
(

fρ(ρ,90◦)− fρ(ρ,0◦)
2

)
cos(2θ)

+

(
fρ(ρ,90◦)+ fρ(ρ,0◦)

2

)
(2)

fθ (ρ,θ)≈ 0 (3)
fφ (ρ,θ) = fφ (ρ,90◦)sin(θ) (4)
τρ(ρ,θ) = τρ(ρ,0◦)cos(θ) (5)
τθ (ρ,θ) = τθ (ρ,90◦)sin(θ) (6)
τφ (ρ,θ) = 0 (7)
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Fig. 3: Complete results of FEA. (a) Force vectors in the îρ -îθ plane for each conductive-sphere position, normalized by the value of fρ at
θ = 90◦ (i.e., the maximum value). A îρ unit vector is shown in yellow for reference. (b) Three components of force vector as a function of θ ,
with trigonometric models (dashed lines) given by Eqs. (2–4), respectively. (c) Torque vectors in the îρ -îθ plane for each conductive-sphere
position, normalized by the value of τθ at θ = 90◦ (i.e., the maximum value). A îρ unit vector is shown in yellow for reference. (d) Three
components of torque vector as a function of θ , with trigonometric models (dashed lines) given by Eqs. (5–7), respectively.

Our decision to model τφ = 0 comes from the observation
that the simulation results appear to simply be numerical noise
with no discernible pattern. The data produce none of the
symmetry we would expect from a magnetic model and exhibit
magnitudes three orders of magnitude smaller than the other
torque components.

Our decision to model fθ ≈ 0, even though Fig. 3(b)
suggests that fθ is also described by a trigonometric function,
is based on two considerations. First, it is evident from
Fig. 3(a) that forces in the îρ -îθ plane are almost entirely in
the îρ direction, such that ignoring the force component in
the îθ direction will likely have a negligible impact on our
ability to perform manipulation. Second, whereas the other
five force-torque components could be modeled as a bridge
between the values at the canonical positions, in the case of
fθ the value at the canonical positions is zero. Consequently,
finding the value of fθ at θ = 45◦ would require additional
modeling, analogous to the efforts of Pham et al. [17] that
led to the model in Eq. (1). Since the negligibility of fθ

may be system/configuration dependent, modeling of fθ may
be justified in future work. For now, we will proceed with
the assumption that closed-loop control will correct for any
modeling deficiencies.

IV. MANIPULATION FRAMEWORK

We now propose a control framework to perform dexterous
manipulation with multiple dipole-field sources (partially)
surrounding the conductive object, using the force-torque
model of Section III. We assume we are given a time-varying
force-torque profile to track. In practice, we generate this

by planning a desired trajectory for the object with bounded
velocity and acceleration and use a simple PD controller to
derive the target wrenches. Our problem then becomes how to
achieve a given desired wrench.

We assume that each source is an electromagnet capable
of dipole rotation about any axis (e.g., an Omnimagnet [16]).
Both m and ωωω can be controlled, but their maximum achiev-
able magnitudes are coupled due to the low-pass-filtering
effect of induction in the electromagnets; that is, an increase
in ω results in a decrease in the maximum value of m that can
be achieved before the amplifiers’ voltage limits are reached.
As in [17], we have chosen to treat m and the direction of ωωω

(i.e., the unit vector ω̂ωω) as the control variables, and to use
a constant rotation frequency ω , which simplifies our control
problem but somewhat limits the peak tracking performance
of the controller. We assume n electromagnets, with the ith

electromagnet located at position Pi. We assume a single
conductive object at pose xxx comprising a position Pc and
orientation Rc [9]. We can describe the conductive object by a
displacement vector ρρρ i =Pc−Pi with respect to each dipole
source, where ρi = ‖ρρρ i‖.

For each electromagnet, we parameterize the control vari-
able ω̂ωω with respect to the world frame (i.e., a common frame
of reference) using spherical coordinates, with a polar angle
ψ measured from from the z-axis, and an azimuthal angle ξ

measured about the z-axis and from the x-axis (see Fig. 4).
Given a pair (ψ , ξ ), we can reconstruct

ω̂ωω =

sin(ψ)cos(ξ )
sin(ψ)sin(ξ )

cos(ψ)

 (8)



The angle θ can then be found using knowledge of ω̂ωω and
the ρρρ value for the electromagnet under consideration:

θ = atan2(||ω̂ωω×ρρρ||, ω̂ωω ·ρρρ) (9)

Let us first consider the special cases when θ = 0◦ or θ =
180◦, where only the radial force-torque components are non-
zero. We construct a unit vector

îiiρ =
ρρρ

ρ
(10)

and then use Eq. (1) to solve for the induced force and torque
on the conductive sphere:

fff = fρ(ρ,θ)îiiρ (11)

τττ = τρ(ρ,θ)îiiρ (12)

For all other values of θ , we can construct unit basis vectors
that are compatible with the model of Section III:

îiiφ =
ω̂ωω×ρρρ

‖ω̂ωω×ρρρ‖
(13)

îiiθ = îiiφ × îiiρ (14)

where îiiρ is calculated as in Eq. (10). The induced force and
torque on the conductive sphere is then:

fff = fρ(ρ,θ)îiiρ + fθ (ρ,θ)îiiθ + fφ (ρ,θ)îiiφ (15)

τττ = τρ(ρ,θ)îiiρ + τθ (ρ,θ)îiiθ (16)

For ease of notation, we refer to this as our wrench model
fff ,τττ = w(xxx,λλλ ,ηηη), where λλλ denotes a set of object parameters
(e.g., sphere radius and conductivity) and ηηη = {i,m,ψ,ξ}
denotes the control parameters.

No closed-form inverse exists for the wrench model. In-
stead, for some instantaneous object pose and given set of
object parameters we can solve the following constrained
optimization problem to select the dipole field source and
associated dipole strength and axis of rotation that produces a
wrench as close as possible to the desired wrench:

argmin
i,m,ψ,ξ

∥∥∥∥[ fff des
τττdes

]
−
[

fff
τττ

]∥∥∥∥2

QQQ
(17)

s.t. i ∈ {1, · · · ,n}
m ∈ [0,mmax]

ψ ∈ [0,π]
ξ ∈ [−π,π]

fff ,τττ = w(xxx,λλλ ,{i,m,ψ,ξ})

where the QQQ-norm enables relative weighting between force
and torque (which have different units). Reformatting ω̂ωω as the
pair (ψ , ξ ) lets us construct the optimization without needing
nonlinear constraints enforcing ω̂ωω to be a unit vector.

We can efficiently find the optimal inputs using a paral-
lelized (two initializations for each of the n electromagnets)
Newton-method solver. We handle bound constraints through
projection using a backtracking line-search [12]. For our
system we set mmax = 40 A·m2.
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Fig. 4: Spherical coordinate systems describing the dipole rotation
vector ωωω with respect to the world frame, and the conductive sphere
with respect to ωωω (as in Fig. 2).

V. ADAPTIVE CONTROL SCHEME

The model and control framework that we proposed in
the previous sections expand the space of possible wrenches
that we can induce compared to previous work, but they still
require that the object being manipulated is a sphere of known
properties. We aim to explore to what extent we can relax this
assumption through the use of an adaptive control framework.
Our hope is that, not only will this approach enable us to
identify the parameters of spherical objects, but will also
enable manipulation of nonspherical objects by identifying
online a spherical approximation that describes the observed
behavior of the object.

We now formalize the system identification and adap-
tive control problem, which aims to find the optimal
physical parameters of a sphere, λλλ

∗, given a discrete,
time-varying sequence of object poses and input controls
Ω = (xxx[0],ηηη , . . . ,xxx[K],ηηη [K]) with time horizon K. Unlike
the empirical model of wrenches induced in spheres, which
was derived using wrench measurements, we now assume
at the time of deployment that we only observe the object
pose. Although many modalities (e.g., lidar, radar, GPS) could
be used to determine object pose in practice, we use visual
observations in our experiments. We use an online smooth-
ing formulation to track the object deriving less noisy pose
estimates as well as associated object velocities ẋxx[k]. In our
wrench model, the free model parameters λλλ are the spherical
radius, r, and electrical conductivity, σ . We can estimate the
mass matrix, M(λλλ ) of a solid sphere with radius r given an
estimate of its density ρ .

We can connect these observed data with our magnetic
wrench model, w, and thus our control inputs, by imposing
a rigid-body motion model on the object dynamics. Given
our target domain of space debris, our motion model assumes
no friction and a simple linear mapping between the applied
wrench and the resulting acceleration (i.e., Newton’s second
law). To solve for the parameters of our model as an op-
timization problem, we must define an associated loss (i.e.,
error) function over the observed data and dynamic object
parameters. We consider two loss formulations. The first is



the inverse dynamics or acceleration-based loss formulation

La(λλλ ,k)=
∥∥∥∥( ẋxx [k+1]− ẋxx [k]

δ t

)
−M(λλλ )−1w(xxx [k] ,λλλ ,ηηη [k])

∥∥∥∥2

QQQ
,

(18)
where δ t is the controller’s update period. The second is the
forward dynamics or force-based loss formulation

L f (λλλ ,k) =
∥∥∥∥M(λλλ )

(
ẋxx [k+1]− ẋxx [k]

δ t

)
−w(xxx [k] ,λλλ ,ηηη [k])

∥∥∥∥2

QQQ
.

(19)
In both cases we use finite differencing to estimate the
acceleration from the observed object velocities. The weights
used in the two QQQ-norms would be different in general. Using
either loss formulation, we can construct the batch system
identification problem [2] as the following optimization:

λλλ
∗ = argmin

λλλ

K−1

∑
k=0

L (λλλ ,k) (20)

We investigate this batch formulation as a baseline in our
experiments below. However, our primary interest lies in
identifying the object parameters online. It is not obvious how
to generate a safe set of controls to collect the data for system
identification when the object properties are unknown. This
motivates our adaptive control formulation.

In adaptive control we leverage our model-based control
to define the control signal, while updating the estimate of
λλλ online based on our observations. Typically, in performing
adaptive control, we would not fully solve this optimization at
each step, but instead perform a single gradient step to update
the parameters:

λλλ [k+1] = λλλ [k]−αk∇λλλ L (λλλ [k],k) (21)

with some step length αk [23, 22]. However, by framing the
adaptive controller as an online optimization problem [19] we
can use a broad set of tools in deciding on how to solve
for the system parameters. In particular we wish to explicitly
model bound constraints on our object parameters and examine
different solvers including the momentum optimizer that has
been shown to improve performance over gradient descent by
smoothing out oscillations [18]. We can additionally examine
mini-batch formulations of the optimization where we use the
most recent k timesteps of pose and control data instead of
the full batch as traditionally done in system identification or
only a single step as traditionally done in adaptive control.
In our experiments we select our step length, αk online using
the same backtracking line search used in our controller, and
handle constraints using the same projection approach [12].
We give further details of the design choices we examined
for solving the adaptive control problem, including the perfor-
mance of the different loss functions, in the following section.

VI. EXPERIMENTS

We now provide details of our experiments and their results.
Pham et al. [17] used numerical simulation to demonstrate that
6-DOF manipulation is possible with the limited model, as

constructing a microgravity simulation to physically validate
the manipulation in 6-DOF was infeasible. To demonstrate the
model is sufficiently accurate on objects in quasistatic motion
and under closed-loop control, Pham et al. [17] constructed
a 3-DOF (2-DOF translation + 1-DOF orientation) physical,
microgravity simulation on the surface of water. As we focus
on generalizing this prior work to more control actions and
object types, we focus on physical experiments in the same
microgravity simulator. We only use numerical simulation to
explore design decisions. In the next section we describe
the physical microgravity simulation environment we use for
model and control validation. Following that, we show manip-
ulation results using our novel continuous-position model of
magnetically induced force and torque in conductive, nonmag-
netic objects. Our experiments show results for both copper
and aluminum spheres. We then provide comparative analysis
of our two proposed system-identification loss functions using
data collected in numerical simulation. Finally, we provide
extensive results of our adaptive controller using the physical
simulator, including with nonspherical objects. Code, data,
and videos associated with the experiments can be found at
https://sites.google.com/gcloud.utah.edu/adaptiveeddycurrent.

A. Physical Microgravity Simulation Environment

We preformed physical experiments using the same system
used in [17] with four Omnimagnets (i.e., omnidirectional
electromagnets) placed beneath a water tank. Figure 1 provides
a top-down view of the environment. The Omnimagnets can
each produce an approximate dipole source rotating about an
arbitrary axis to match the fully continuous ω produced by our
controller. This produces a low-drag environment where forces
act linearly on acceleration, thus acting similar to dynamics
under microgravity in the plane. We placed a camera above the
water tank to detect a fiducial marker placed on top of a plastic
raft with the object of interest inside and rigidly connected
to the raft. We solve a smoothing problem online to decrease
noise from the instantaneous marker locations and estimate the
object velocity. We show the conductive, nonmagnetic objects
used in our experiments in Fig. 5.

B. Validation of Continuous-Position Force-Torque Model

Here, we validate our force-torque model introduced in
Section III by reproducing the trajectory tracking experiments
from [17] using the novel model. This task requires the system
to control the object of interest to track a 3-DOF planar
Cartesian trajectory to draw a square, while reorienting the
object to point in the direction of motion each time it reaches
a corner and maintain a fixed heading during motion along
the edge of the square. We performed 5 trial experiments
manipulating a copper sphere. For these experiments, we
provide an accurate set of physical parameters to the model.
In addition, we preformed 5 trials performing the Block-U
trajectory while maintaining a constant orientation; the results
of one of these trials is shown in Fig. 1. We find qualitatively
that the controller tracks the desired trajectory well, correcting
for slight deviations in position and orientation from the target

https://sites.google.com/gcloud.utah.edu/adaptiveeddycurrent


Fig. 5: The four objects used in our manipulation experiments: (back,
left) a solid aluminum sphere of radius 20.0 mm, (back, right) a solid
copper sphere that we approximate as having a radius of 20 mm but
by mass-density has an effective radius of 19.8 mm, (front, left) a
piece of aluminum scrap approximately cylindrical in shape with
radius 25.2 mm and length of 23.1 mm with a hole in the center that
is counterbored from one side, and (front, right) a solid, elongated
copper cuboid with length 50 mm cut from a 25.4 mm square stock.

trajectory. Quantitatively, we examine the absolute tracking
error in terms of both position and orientation across all of
the square tracking experiments as the average error across
all timesteps for each trial. Fig. 6 shows the distribution of
average error across the trials. We see that the controller
using our proposed continuous model achieves a substantial
improvement over the results of the model in [17] (compare
“Copper Pham et al.” and “Copper known object”), while
solving a simpler optimization problem.

C. Acceleration-Based Loss Is Better than Force-Based Loss

We conducted a series of numerical simulations in 6-DOF
using our proposed model to examine optimization choices
for system identification and adaptive control. Our primary
objective was to examine which of our proposed loss functions
performed best when estimating the radius and conductivity
of the sphere being manipulated. To this end, we computed
both losses with varying values of sphere radius in the batch
system-identification setting. We visualize the log-loss for both
functions in Fig. 7. We see that the acceleration-based loss has
a single minimum within the feasible range of radii, which
coincides with the true radius of 0.02 m. The force-based loss
on the other hand has a local minimum at the true radius and
a global minimum at 0 radius as both the force and mass-
matrix M decay to zero. With the force-based loss there is a
substantial region where the gradient points towards the global
minimum at 0 instead of the true radius and local minimum.
As such, we elect to use the acceleration-based loss for all
subsequent experiments to avoid the degenerate solution at 0.

We conducted further numerical simulations with varying
levels of additive Gaussian noise on the observed object
pose to design our optimization for online adaptive control.
We found that using a mini-batch of the most recent 25
pose observations worked well in estimating the gradient in
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Fig. 6: Tracking error for each manipulation experiment. Points
average absolute error per trial, bars show minimum and maximum
values, across 5 trials. Results are for: copper sphere using method
from Pham et al. [17], copper sphere using proposed method and
known object parameters, copper sphere using adaptive control, alu-
minum sphere using adaptive control, copper cuboid using adaptive
control, and aluminum cylinder using adaptive control.
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Fig. 7: Natural log of the total loss computed using force-space versus
acceleration-space formulations of the object parameter loss. True
radius is 0.02 m.

Eq. (21). We conduct a single gradient update step at each
iteration of the control loop, selecting the update step length
using a backtracking line search.

We found these settings made a good trade-off between
being responsive to changes in the underlying dynamics pa-
rameters (created by abruptly shifting the simulated object
radius to a new value), while still suppressing control errors
induced from the noisy observations. Although several solvers
were able to converge to the true radius while tracking the
target trajectory (e.g., Newton’s method, Gauss-Newton), we
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Fig. 8: Adaptive control results on different objects. Black shows individual trials and blue the mean trajectory while red shading shows 95
percent confidence path computed given 5 trials per object. Units are in meters.

elected to use the momentum strategy [18] for all subsequent
physical-system experiments, given its strong performance on
our tests and those reported by Ratliff et al. [19].

As a final validation of these choices, we solved the
batch system-identification problem (i.e., offline) of finding
the sphere’s radius on the data collected in the physical system
experiments above. We found in the presence of observation
noise and calibration error across 5 trials of the Block-U trajec-
tory the estimated radius converged to {19.9, 21.3, 21.2, 20.6,
20.4}mm, and across 5 trials of the square trajectory radius
estimates converged to {16.8, 18.3, 18.8, 19.0, 19.7}mm. The
measured radius of the sphere is 19.8 mm. In these trials,
conductivity converged within 1% of its initial value, which
had been initialized to the conductivity of copper.

D. Adaptive Control of Unknown Spheres

We validate our adaptive controller by running 5 trials each
on the copper and aluminum spheres shown in Fig. 5. In
each trial, we examine optimizing over both the radius and
electrical-conductivity parameters of the model. We initialized
the parameters by setting the radius, r = 0.01 m, the electrical
conductivity to the true value for copper, σc = 5.800E +
07 S/m, and the density to that of copper, ρc = 8940 kg/m3.
Even the aluminum sphere was set with fixed density of copper
and initialized with conductivity of copper. Additionally of
note is the bound constraint on the object’s radius which was
set to r≥ 0.01 m. We include the mass matrix of the raft, Mb,
with the estimated mass of the object, Mo(λλλ ), in the inverse
dynamics model to remove its effects on control, M(λλλ ) =
Mb+Mo(λλλ ). However this value does not enter into our force-
torque model. We estimate the mass matrix of the object from
its inferred radius as Mo = diag(mo,mo,mo,ho,ho,ho), with
mo = ρc

4
3 πr3 and ho =

2
5 mor2.

We visualize tracking performance for all trials of the spher-
ical objects in Figs. 8(a) and 8(b). Quantitatively, we find that
tracking performance is comparable to the performance for the
known model (compare “Copper adaptive” and “Aluminum
adaptive” to “Copper known object” in Fig. 6).

Fig. 9(a) visualizes a representative trial of adaptive control
of the aluminum sphere. We show the time-varying value of

(a) Aluminum sphere single trial trajectory
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(b) Aluminum sphere adaptive parameters over time
Fig. 9: (a) Example trajectory produced by our adaptive controller
manipulating an aluminum sphere. The red line represents position
over time. Yellow arrows depict the object orientation, commanded to
hold a fixed orientation along straight paths and to rotate in place at
each corner. (b) Adaptive parameters over time for the first 10 minutes
of each trial of the 40 minute trajectory. The blue line shows average
parameter at timestep t and the orange region shows 1 standard
deviation. The dashed black line represents the true value.
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Fig. 10: Two trials of adaptive parameters over time for adaptive
manipulation of a copper sphere. The yellow line shows a trial where
the radius estimate was initialized to twice its true value, and the
orange line shows a trial where the radius was initialized to half its
true value. The dashed black line shows the true value.

the parameter estimates compared to their true values, across
all trials, in Fig. 9(b). These results demonstrate that when
conductivity is initialized much larger than its true value, the
adaptive controller estimates a lower radius to compensate,
rather than adapting conductivity. These results suggest that
the control scheme is robust to inaccuracies in the underlying
force-torque model. Further, since we primarily desired good
control performance, we find the lack of precise parameter
identification acceptable.

We further investigate our adaptive controller’s robustness to
different initializations by performing individual trials at a va-
riety of initial conditions while manipulating a copper sphere.
These results, shown in Fig. 10, demonstrate only slightly
diminished performance by initializing with parameters that
vastly over- or under-predict the generated wrenches.

E. Adaptive Control of Nonspherical Objects

Our final set of experiments test the hypothesis that the
spherical model acts as a good first-order approximation for
control of nonspherical objects. We investigate this by using
our adaptive controller with the spherical-object model to
manipulate nonspherical objects. We conducted 5 trials each
on the elongated copper cuboid and the aluminum cylindrical
objects shown in Fig. 5. We initialize the parameter estimates
as in the previous experiment, with the density set to that of
copper and the conductivity initialized to that of copper.

We visualize tracking performance for all trials with these
object in Figs. 8(c) and 8(d). A characteristic trial of ma-
nipulation of the cuboid object is shown in Fig. 11, with the
estimated sphere radius visualized at different times across the
trajectory. We see that the controller never settles on a single
estimate of the radius, instead adapting the value continuously
based on the locally observed motion.

We see from Fig. 6 that, even though our force-torque model
was built entirely from data derived from spheres, we achieve
comparable tracking performance to that of the spheres when
controlling objects with significantly nonspherical geometry.

Fig. 11: Example trajectory produced by adaptive control of a copper
cuboid. Periodically placed spheres visualize the radius estimate
at different points along the trajectory. Note that no ground-truth
radius exists for this nonspherical and anisotropic object. Instead the
controller continuously adapts the radius in order to provide a locally
correct model of dynamics.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel, continuous model of magneti-
cally induced forces and torques in nonmagnetic, conductive
spheres. Our proposed model unifies the three discrete models
previously proposed in [17], while also generalizing the model
to arbitrary object positions, providing a larger space of forces
and torques for use in downstream control tasks. We further
validate an adaptive control technique for use of our novel
model to control objects with unknown physical parameters
and even nonspherical objects.

As future work we propose expanding the set of experi-
mental objects, while also extending experiments to full 6-
DOF microgravity simulations using submerged objects. We
can further examine relaxing the assumptions of known object
density in online mass matrix estimation. We also wish to
examine combining forces from multiple magnetic sources
simultaneously, which do not simply superimpose [17].

Our experiments validate our proposed model showing we
can achieve better tracking performance than the previous
model, while solving a computationally less expensive op-
timization problem. Using our proposed model and adap-
tive controller we demonstrate the first physical magnetic
manipulation of aluminum spheres with unknown physical
parameters and the first ever magnetic control of nonspherical,
nonmagnetic objects. We see this as an important step toward
manipulation of space debris, where we lack knowledge of
exact physical models.
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APPENDIX A

In this appendix we describe how to setup Ansys Electronics
Desktop 2019 R2 Maxwell to simulate the eddy-current-
induced forces and torques on conductive copper spheres due
to a rotating magnetic dipole as in Sec. III. The steps described
in this appendix follow Pham et al. [17] directly. The order
described below is in the same order as they would appear in
the “Project Manager”. Once the setup is performed for each
configuration, force-torque data can be obtained by performing
“Analysis All”. In order to perform transient analysis with a
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rotating dipole source, one has to go to “Maxwell 3D”, select
“Solution Type” and choose “Transient”.

Using Coordinate System = Global, we modeled
the magnetic dipole source as a spherical NdFeB grade-N48
rare-earth magnet. When building the spherical magnet, it
has the following model properties: Command = Create
Sphere, Coordinate System = Global, Center
Position = [0, 0, 0] (all model coordinates are
provided in units of millimeters). The center of the
sphere should be located at the center of the Global
coordinate system. The material property for the spherical
magnetic dipole has the following material properties:
Relative Permeability µm/µ0 = 1.04, Bulk Conductivity
σ = 714286 S/m, Magnetic Coercivity Hcm = 1055931 A/m
(in Ansys this is entered as a negative value), Core Loss
= None, Composition = Solid, Mass Density
= 7550 kg/m3, Young’s Modulus = Undefined,
Poisson’s ratio = Undefined, and Thermal
Modifier = None. The radius of the magnet was
determined to achieve the desired dipole strength m, which
is equal to the product of the remanent magnetization Mr
and the volume of the sphere. Using a linear magnetization
model, we can compute Mr = Hcmµm/µ0. Also note that the
default magnetization in Ansys is in the x direction.

To enable the dipole-source rotation, a regular polyhedron
was created surrounding the magnet with the following
model properties: Coordinate = Global, Center
Position = [0, -45, 0], Start Position =
[0, 0, 0], Axis = Y, Height = 90, and Number
of Segments = 100.

To model the conductive sphere, a new coordinate system
was created, which enables all relative sphere components to
move together and output force-torque values to be referenced
relative to the conductive-sphere frame. The model for the
conductive sphere has the following properties: Command =
Create Sphere, Coordinate System = Sphere,
Center Position = [0, 0, 0], and the desired
radius. A conductive copper sphere has the following
material properties: Relative Permeability = 1,
Bulk Conductivity = 58000000S/m, Magnetic
Coercivity = 0, Core Loss = 0, Composition
= Solid, Mass Density = 8933kg/m3, Young’s
Modulus = 120000000000, Poisson’s Ratio =
0.38, Thermal Modifier = None.

A cubic box was created to surround the conductive sphere
for refined meshing. It has the following model properties:
Command = Create Box, Coordinate System =
Sphere, with position and dimension of the box set such
that the box was centered on the conductive sphere and had a
side length that is 1% larger than the diameter of the sphere.
It has material property = air.

Dipole rotation is implemented by right selecting the
polyhedron model and assigning a Band. This generates a
“MotionSetup” option under Model, which one can use to
configure the following motion parameters: Motion Type
= Rotation, Coordinate System = Global,

Axis = Y, Direction = Positive, Initial
Position = 0 deg, Has Rotation Limit =
unchecked, and Non Cylindrical = unchecked.
Under the “Mechanical” tab one can update the angular
velocity to the desired frequency of rotation. This
automatically generates a CylindericalGap mesh and the
axis of the rotation vector must be along the same axis as the
length of the polyhedron.

Output parameters are produced by right selecting the
conductive sphere and creating parameters for force, torque
in x, torque in y, and torque in z, with respect to the
conductive sphere coordinate system. A single force parameter
will automatically produce outputs for all x, y, z directions.
Depending on the relative placement of the conductive sphere
to the dipole rotation axis, one can transform the Cartesian
coordinates to our proposed spherical coordinate system.

When assigning Mesh parameters, one must first
right select the object and then select “Assign Mesh
Operation”. All mesh configurations have the following
mesh properties: Type = Length Based, Region
= Inside Selection, Enable = checked,
Restrict Length = checked, and Restricted
Max Elems = checked. Max Length and Max Elems are
different for each object.

The mesh for the spherical permanent magnet is the mesh
for the polyhedron. The polyhedron has Max Length =
5mm and Max Elements = 5000. For the conductive
sphere and its cubic box, the Max Length and Max Elems are
scaled proportionally to r for consistent mesh properties across
all conductive spheres. The simulated radius was r = 50 mm.
The mesh for the cubic box of air is an additional mesh
operation for the conductive sphere and has Max length
= r/5 mm and Max Elems = 50000r.

In general, the Analysis setup consists of Stop Time and
Time Step for each simulation and are listed here with respect
to ω = 1 Hz and Time Step = 1 ms. For this paper, a Stop
Time = 2.5 was used. For any value of ω , the Analysis Setup
parameters would be scaled proportional to each frequency in
order to maintain the same number of data points and number
of dipole rotations. For examples, a conductive sphere with
50 mm radius, at ω = 2 Hz, values would be updated to Stop
Time = 1.5 s and Time Step = 0.5 ms.

Under “Results”, create two transients reports of rectangular
plots for force and torque output on the conductive sphere.
Data is saved for each time step of the simulation.

To include the effects of eddy current on the conductive
sphere, go to Maxwell 3D, select Excitations, select Set Eddy
Effects, and check the box for the conductive sphere.

Once the setup is complete, one can perform “Analysis All”
in order to start the simulations. While iterating through all
parameters, simulations were automated through the use of a
Python script using ANSYS Maxwell “Automation”. Steady-
state data was obtained by averaging the last dipole rotation.
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