
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Self-Supervised Unseen Object Instance
Segmentation via Long-Term Robot Interaction

Yangxiao Lu1 Ninad Khargonkar1 Zesheng Xu1 Charles Averill1 Kamalesh Palanisamy1

Kaiyu Hang2 Yunhui Guo1 Nicholas Ruozzi1 Yu Xiang1
1The University of Texas at Dallas 2Rice University

1{firstname.lastname}@utdallas.edu 2{firstname.lastname}@rice.edu

Abstract—We introduce a novel robotic system for improving
unseen object instance segmentation in the real world by leverag-
ing long-term robot interaction with objects. Previous approaches
either grasp or push an object and then obtain the segmentation
mask of the grasped or pushed object after one action. Instead,
our system defers the decision on segmenting objects after a
sequence of robot pushing actions. By applying multi-object
tracking and video object segmentation on the images collected
via robot pushing, our system can generate segmentation masks
of all the objects in these images in a self-supervised way. These
include images where objects are very close to each other, and
segmentation errors usually occur on these images for existing
object segmentation networks. We demonstrate the usefulness
of our system by fine-tuning segmentation networks trained on
synthetic data with real-world data collected by our system. We
show that, after fine-tuning, the segmentation accuracy of the
networks is significantly improved both in the same domain and
across different domains. In addition, we verify that the fine-
tuned networks improve top-down robotic grasping of unseen
objects in the real world 1.

I. INTRODUCTION

Object perception is a critical task in robot manipulation.
Model-based methods leverage 3D models of objects and solve
the 6D object pose estimation problem to localize objects in
3D [12, 37, 33, 35]. Using the estimated object poses and
the 3D models of objects, a planning scene can be set up
for manipulation trajectory planning. However, requiring a 3D
model for every object that needs to be manipulated is not
feasible in the real world. Recent model-free approaches for
object perception focus on segmenting unseen objects from
images [38, 40, 14]. A segmented point cloud of an object can
be used in grasp planning for robot manipulation [21, 29]. In
this way, an object can be grasped from partial observations
without using its 3D model.

Recent model-based and model-free methods for object
perception train neural networks to recognize objects. Since
it is difficult to obtain large-scale real-world datasets in robot
manipulation settings, synthetic data is widely used for train-
ing [32, 39, 5]. Although models trained with synthetic data
can be directly used in the real world by leveraging domain
randomization [31] or domain transfer [6, 44] techniques, these
models still have errors in the real world due to the sim-to-real
gap. The question we would like to address in this paper is
how can a robot automatically obtain training data in the real

1Video, dataset and code are available at https://irvlutd.github.io/
SelfSupervisedSegmentation

Synthetic data-
trained network

Under-segmentation

Real data-fine-
tuned network

Correct segmentation

Robot pushing for
data collection

Fine-tuning

Input image

Input image

Fig. 1. Our system leverages robot pushing to collect real-world images
and generate segmentation masks of objects in the collected images in a self-
supervised way. The collected images can be used to fine-tune segmentation
networks trained with synthetic data and improve their performance.

world to improve its object segmentation model pre-trained
with synthetic data. We focus on improving Unseen Object
Instance Segmentation (UOIS) to facilitate robot manipulation.

Interactive perception [7] emphasizes that robots can apply
actions to the environments and utilize the visual-motor rela-
tionship to improve perception. In the context of object recog-
nition, two widely used interaction types are robot grasping
and pushing. Previous works have explored leveraging robot
grasping or pushing to obtain object segmentation data in a
self-supervised way [24, 15, 41]. All these methods can only
obtain the segmentation mask of the grasped or pushed object
by comparing the scene before and after grasping [24] or
utilizing optical flow to segment the moved objects in robot
pushing [15, 41]. The drawbacks of segmenting objects from
one action are that, first, the method cannot segment unmoved
objects in the scene; second, if two objects are moved together,
the method will segment them as one object. Although [41]
proposes to train a classifier to decide whether a single object
is pushed or not, since the classifier is trained in simulation,
it still suffers from the sim-to-real gap.

To overcome the limitations of existing work on self-
supervised object segmentation via robot interaction, we pro-
pose a new system that leverages long-term robot interaction
to segment unseen objects in a self-supervised way. Our key
idea is to defer the decision on object segmentation until a
robot has interacted with all the objects in a scene for a period

https://irvlutd.github.io/SelfSupervisedSegmentation
https://irvlutd.github.io/SelfSupervisedSegmentation

of time. Intuitively, if a robot has pushed objects in a scene
for a number of times, i.e., around 20 pushes for 5 objects in
our experiments, these objects are very likely to be separated
from each other. Once the objects are separated, existing
approaches on unseen object segmentation such as [38, 19]
can successfully segment them. In this way, our system can
segment all the objects in the scene but not only the pushed
object in one action. More importantly, the system enables the
robot to propagate a correctly segmented mask of each object
to all the collected images during robot pushing including
images where objects are very close to each other. This is
achieved by combining multi-object tracking to extract object
tracklets, i.e., segments of objects in video frames, and video
object segmentation where an initial mask of an object can
be propagated to all other frames. The system utilizes the
object tracklet to select a good initial mask for propagation.
Consequently, our system enables a robot to collect a sequence
of images of objects in a scene and obtain segmentation masks
of all the objects in these images.

We demonstrate the usefulness of our system by using
the collected real-world images to fine-tune existing, pre-
trained object segmentation models [19]. We show that after
fine-tuning, the object segmentation accuracy of the model
can be significantly improved. The improvement is achieved
in the same domain as the fine-tuning data as well as on
the benchmark datasets for evaluating unseen object instance
segmentation [25, 28]. Fig. 1 illustrates the fine-tuning process.
In addition, we show that using the fine-tuned segmentation
model can improve top-down grasping performance in a table
clearing task where a robot is asked to put all the objects on
a table into a bin. In summary, the contributions of our work
are as follows.

• We introduce a novel robotic system that leverages long-
term robot interaction to segment unseen objects in a self-
supervised way.

• Our system illustrates that combining multi-object track-
ing and video object segmentation with robot pushing
can help robots to singulate objects from each other in
cluttered scenes.

• We demonstrate that using our system to collect real-
world images for fine-tuning can improve object segmen-
tation accuracy and robot grasping performance.

II. RELATED WORK

A. Unseen Object Instance Segmentation

Different from category-based object instance segmentation
methods [17, 8, 9] that focus on segmenting object instances
among a set of pre-defined object categories, unseen object
instance segmentation emphasizes segmenting arbitrary ob-
jects that present in input images. The testing objects can
be novel such that a segmentation model has not seen them
during training. Earlier works on UOIS utilize low-level image
cues such as edges, contours, and surface normals to group
pixels into objects [25, 34, 11]. These bottom-up approaches
tend to over-segment objects since there is no object-level

supervision to learn the concept of objects. Recent approaches
on UOIS leverage large-scale synthetic data and deep neural
networks to segment unseen objects [39, 38, 40, 14]. These
methods significantly improve object segmentation accuracy,
which enables robotic grasping of unseen objects [21, 29].
However, since these models are trained with synthetic data,
they still suffer from the sim-to-real gap. The primary error is
under-segmentation in the real world. When objects are very
close to each other, the models trained with synthetic data
cannot separate them. Recently, Zhang et al. [44] propose to
apply test-time domain adaption to improve the segmentation
performance, where a set of images without ground truth labels
in the test domain are used to adapt the segmentation network.
Our system is complementary to domain adaption techniques
since it is able to obtain training images with ground truth
labels automatically. Therefore, we can use supervised learn-
ing to fine-tune segmentation networks. More importantly, we
show that, after fine-tuning in one domain, the performance of
the segmentation networks can be improved in other domains,
which avoids adaption in every testing domain.

B. Self-Supervised Robot Perception

Self-supervised learning is an attractive learning paradigm
where training data and training signals can be obtained
automatically without human labor. Since a robot can natu-
rally interact with its environment to collect data [7], self-
supervised learning for robot perception has received more
attentions recently. One type of approach utilizes multi-view
consistency of images captured from different viewpoints to
obtain the ground truth annotations for learning. Multi-view
consistency based self-supervised learning has been applied to
object segmentation [42], object detection [20], 6D object pose
estimation [13] and dense pixel-wise correspondences [26, 16]
in robot manipulation settings. Another type of approach lever-
ages robot actions such as grasping and pushing to interact
with objects and then computes scene differences [24] or
optical flow [15, 41] before and after applying an action to
obtain ground truth labels of objects for learning. Our system
falls into this category where we also employ robot pushing
with optical flow to help segment objects in a self-supervised
way. The main novelty of our system compared to previous
methods on self-supervised object segmentation [15, 41] is
that we leverage long-term robot pushing to segment all the
objects in a collected video sequence, while previous methods
can only segment the grasped or pushed object in an image.

III. SELF-SUPERVISED UNSEEN OBJECT INSTANCE
SEGMENTATION

A. System Overview

The motivation to build our system is to fix segmentation
errors in existing UOIS methods [38, 19]. These methods
are trained with synthetic RGB-D images generated using
3D models of objects. Due to the sim-to-real gap and the
arrangements of objects in the simulator, these methods often
cannot separate objects that are very close to each other.
One example is shown in the first initial segmentation image

Captured
Image

Robot Pushing

Initial
Segmentation

Final
Segmentation

Time

… … … …

1 segment 3 segments 4 segments 5 segments 4 segments 5 segments

5 segments 5 segments 5 segments 5 segments 5 segments 5 segments

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Optical-flow based Multi-Object Tracking +
Video Object Segmentation

Fig. 2. System overview. Our system leverages robot pushing to interact with objects. The pushing actions are guided by the initial segmentation masks of the
objects generated from a segmentation network trained with synthetic data. Images before and after each pushing action are captured. By using the sequence
of images with the initial segmentation masks, our system combines optical flow-based multi-object tracking and video object segmentation to compute the
final segmentation masks, which fix errors in the initial segmentation masks. Red arrows indicate the segmentation errors. The collected images and the final
segmentation masks can be used to fine-tune the segmentation network to improve its performance.

in Fig. 2, where five objects are packed together and the
MSMFormer [19] only outputs one mask for all five objects. In
grasping applications, a robot cannot grasp these objects due to
the incorrect segmentation result. Our idea to fix these errors is
to obtain ground truth masks of these packed objects in a self-
supervised way by leveraging robot interaction with objects.
Then, we can use these images with the corresponding ground
truth masks to fine-tune the segmentation networks [38, 19].
With enough data for fine-tuning, the networks should be able
to segment closely packed objects.

The main challenge in this scenario is obtaining the ground
truth masks when objects are close to each other. Previ-
ous methods that leverage robot interaction to obtain object
masks [15, 41] can only obtain one mask of the pushed or
grasped object in an image. They cannot generate masks of
all the objects in the scene because they only use one robot
action and try to figure out which object has been moved.
Instead, in our system, we allow the robot to continuously
push objects in a random fashion, and we generate a sequence
of images before and after each pushing action, i.e., around
20 pushes for each scene in our experiments. Finally, we use
these images to perform multi-object tracking and video object
segmentation. In this way, our system can generate masks of
all the objects in the image sequence including the first image,
where all the objects are close to each other. Fig. 2 illustrates
an overview of our system. The collected images with their
generated masks can be used to fine-tune existing methods
for unseen object instance segmentation [38, 19] in order to
improve their performance in the real world. We introduce

each component of the system in the following sections.

B. Data Collection via Robot Pushing

Since our goal is to collect hard to segment images to fine-
tune the segmentation networks, we intentionally put objects
together for each scene in the beginning of the data collection
process. After setting up a scene on a tabletop, a robot
starts pushing these objects. A Fetch mobile manipulator is
employed in our system, and an RGB-D image is captured
before and after each push action, where we used the RGB-D
camera on the Fetch robot to capture images.

Different from methods that carefully learn a pushing or
grasping policy for singulation [41], we design a simple
pushing strategy using object instance segmentation from the
MSMFormer [19] as input. This is because our system does
not require all the objects to be singulated at the end of the
interaction. As long as an object has been separated from
other objects for a period of time during pushing, the system
is able to generate correct segmentation masks for it thanks
to the multi-object tracking and video object segmentation
techniques utilized in the system. In cases where one push
action cannot separate two objects if both objects move
together, multiple push actions may separate them. Therefore,
our system benefits from long-term robot interactions with a
sequence of pushes.

Specifically, suppose at time t, the system captures an RGB-
D image It. We obtain a set of nt object segmentation masks
{oit}

nt
i=1 on It by running the MSMFormer network on it.

These masks are illustrated as the initial segmentation in
Fig. 2. Based on the object segmentation, the robot randomly

Backward flow

Forward flow

Forward flow

Backward flow

Score = 0.74

Score = 0.45(a)

(b)

Fig. 3. Illustration of the matching scores between objects based on forward
and backward optical flow.

selects an object to push. First, a 3D bounding box is computed
for each segmented object by bounding the 3D point cloud of
the object. Using the depth image and the camera intrinsic
parameters, we can back-project the depth image into a 3D
point cloud of the scene in the camera frame. Since we also
know the camera pose in the robot frame, we can convert the
point cloud into the robot frame. Using the segmentation mask
of each object, we can extract the points of the object and
compute a 3D bounding box for it in the robot frame. Second,
according to center of the 3D bounding box, the robot decides
to either push the object to the left or to the right. We select the
pushing direction to always push the object towards the center
of the robot, which prevents objects being pushed outside the
reach of the robot. Third, a motion trajectory is planned to
the left side (pushing right) or right side (pushing left) of the
object. We used the MoveIt motion planning framework to
plan the trajectories. Then the planned trajectory is executed
to move the robot arm to the pushing location. Finally, the
pushing action is achieved by adding an offset to the shoulder
joint of the Fetch arm depending on the pushing direction.

Note that our pushing strategy cannot achieve perfect
singulation results compared to learned polices or designed
strategies for singulation. However, singulation is not our main
goal. We also want to collect diverse datasets for learning. Our
pushing strategy is effective to separate objects and perturb
objects in the scene in order to generate diverse images. In
addtion, although the initial segmentation has errors, it can still
be used to guide the pushing process. A sequence of pushing
actions and the generated images are shown in Fig. 2.

C. Optical Flow-based Multi-Object Tracking

After the data collection via robot pushing, we obtain a
sequence of images I1, I2, . . . , IN with the corresponding ini-
tial segmented objects {oi1}

n1
i=1, {oi2}

n2
i=1, . . . , {oiN}nN

i=1, where

N ≈ 20 in our experiments. Since there are errors in these
initial masks, our next task is to fix these errors and obtain
correct segmentation masks for all the objects in the image
sequence. Our idea is to leverage the observation that if
a mask incorrectly includes more than one object, after a
robot pushing, the mask will be broken down into multiple
objects. On the other hand, if a mask correctly segments
one object, after pushing, the mask will remain the same.
However, one pushing action may not be able to singulate
an object successfully. Therefore, we leverage a sequence of
robot pushing actions in our system. In this case, if a mask
remains the same after several pushing actions, it is highly
likely to be a correct segmentation.

In order to compare the initial segmentation masks across
image frames, we need to associate masks across frames. This
problem is studied in the literature as tracking by detection [43,
4, 36, 27]. The most important component in a tracking-by-
detection method is a similarity measurement between two
object detections across video frames, which can be learned
from data [27] or defined using image features [36]. In our
system, since we do not have many data to learn the similarity
measurement in robotic manipulation settings, we design one
based on optical flow between image frames.

Let oit1 be a mask on image It1 and ojt2 be a mask on image
It2 . We would like to compute a similarity score between the
two masks as s(oit1 , o

j
t2). We only consider adjacent images

in data association. Therefore, we can assume t2 = t1 + 1.
We leverage optical flow between the two images to define
the similarity score. Let oit2 = oit1 + f i

t1,t2 be the propagated
mask of object oit1 to frame It2 using forward flow f i

t1,t2 .
Similarly, we can propagate the mask of object ojt2 to frame
It1 using backward flow: ojt1 = ojt2 + f j

t2,t1 . The similarity
score between the two masks is defined as

s(oit1 , o
j
t2) = min

(
IoU(oit2 , o

j
t2), IoU(oit1 , o

j
t1)

)
, (1)

where the IoU(·, ·) function computes the intersection over
union between two binary masks. Intuitively, one mask is
propagated to another image using optical flow and compared
to the other mask.

Fig. 3 illustrates two examples of the computed matching
scores. In case (a), at time t1, the initial segmentation cannot
separate the corn and the salt bottle. The propagated mask to
time t2 cannot match the mask of the corn at time t2 well.
Therefore, the matching score is low. In case (b), the masks
of the tomato match well using both the forward flow and the
backward flow. The matching score is high. When the optical
flow estimation is accurate, the similarity score in Eq. (1)
serves as a good measurement for data association between
objects. In our system, we use the RAFT [30] network to
compute optical flow.

With the above similarity score, we can leverage existing
multi-object tracking methods such as network flow-based
approaches [43, 27] or Markov decision process-based ap-
proaches [36] to generate trajectories of objects across im-
age frames. Instead, we found that a simple greedy search
algorithm works well in the tabletop robot pushing settings

Initial mask: frame 20 frame 10 frame 7 frame 4 frame 0

Initial mask: frame 21 frame 19 frame 9 frame 3 frame 0

Fig. 4. Illustration of the XMem [10] video object segmentation in our collected data. The initial mask is used to initialize the segmentation process.

since there are no long-term occlusions between objects or
new objects coming in and out in these settings. The greedy
data association algorithm starts from one mask in the last
image frame IN . Then it associates the mask to a previous
mask which has the highest matching score if their matching
score is larger than a pre-defined threshold, and repeats this
process until the highest matching score is smaller than the
threshold. In this way, it generates a tracklet for one object.
After that, it selects a remaining mask and repeats the process
to generate the next tracklet. We start the data association from
the last frame in a backward way because objects are likely
to be separated in the end of the robot pushing, which helps
for object tracking.

D. Mask Propagation via Long-Term Object Segmentation

The output from the multi-object tracking algorithm is a set
of tracklets {Ti}Mi=1, where tracklet Ti = (oit1 , o

i
t2 , . . . , o

i
tm)

consists of a sequence of object masks from the initial segmen-
tation. The lengths of these tracklets can be different. Majority
masks in each tracklet correctly segment one object, since
wrong initial segmentation masks have low matching scores
as illustrated in Fig. 3. If we can utilize the extracted tracklets
and propagate the correct masks to all the image frames for
all the objects, we can obtain correct segmentation masks for
the collected data via robot pushing.

To achieve this goal, we utilize a state-of-the-art video
object segmentation method named XMem [10]. Given an
initial mask of an object, XMem can segment the object in
the following video frames. It maintains a memory buffer
that stores the features of the target object, which enables
it to segment the target in long video sequences and handle
occlusions. In the traditional video segmentation scenarios,
the initial mask of a target is given manually on the first
video frame. In our case, we need to generate the initial mask
automatically. It is critical to select a correct initial mask for an
object. Otherwise, a wrong mask will be propagated to other
frames. We utilize the observation that if a mask being pushed
can still have high matching scores (Eq. (1)) to the previous
mask and the next mask in a tracklet, the mask is likely to
contain a single object. Therefore, we select the pushed mask

with the highest matching score as the initial mask to initialize
XMem. The segmentation goes with two directions, where one
goes to the first frame and the other one goes to the last frame
in the collected image sequence. Fig. 4 shows two examples of
the object segmentation with XMem. After all the tracklets are
processed, the segmentation masks are combined to generate
the final segmentation of the images (see Fig. 2). In this way,
our system can obtain segmentation masks of objects when
they are very close to each other.

IV. APPLICATIONS

A. Transfer Learning for Object Segmentation

Our system can be used to collect images with the cor-
responding object segmentation masks in a self-supervised
way. Then we can use these images to fine-tune the object
segmentation networks to improve their performance. Since
the collected data include correct segmentation masks when
objects are very close to each other, the fine-tuned model is
able to fix segmentation errors and correctly separate objects
in cluttered scenes.

For the fine-tuning, we start with a segmentation model
trained with synthetic data. We used MSMFormer [19] in our
experiments, which is also used to generate the initial seg-
mentation masks for robot pushing. We initialize the network
with the pre-trained weights on the synthetic data, and then
train the network for a number of epochs on the collected
real-world data with a smaller learning rate. We conducted an
ablation study on different fine-tuning strategies. Specifically,
the backbone of the network can be fixed or be trainable during
fine-tuning. The fine-tuning data can be a mixture of synthetic
images and real-world images or real-world images only. The
effect of these strategies are presented in Section V.

B. Top-Down Robot Grasping

Unseen object instance segmentation can facilitate robot
grasping of unknown objects as demonstrated in previous
works [21, 22]. These methods use the segmented point clouds
of objects to plan grasps for grasping. Improvement in object
segmentation can benefit the grasp planning stage and improve
the grasping performance subsequently. In this work, we show

TABLE I
UOIS FIRST-STAGE RGB-D RESULTS ON OCID AND OSD WITH FIXED OR LEARNABLE BACKBONE AND DIFFERENT DATASETS. THESE STRATEGIES ARE

USED TO FINE-TUNE MSMFORMER [19].

Datasets and backbones
OCID (2390 images) OSD (111 images)

Overlap Boundary Overlap Boundary
P R F P R F %75 P R F P R F %75

MSMFormer [19] 88.4 90.2 88.5 84.7 83.1 83.0 80.3 79.5 86.4 82.8 53.5 71.0 60.6 79.4
Pushing Data + fixed backbone 93.9 48.5 51.0 80.7 45.8 43.4 47.9 81.4 72.8 75.5 41.1 61.6 47.5 65.3

Pushing Data + learnable backbone 88.8 82.6 85.3 65.3 72.4 68.2 79.8 88.8 82.6 85.3 65.3 72.3 68.2 79.8
Mixture Data + fixed backbone 90.8 88.2 88.9 82.3 82.9 81.9 83.3 82.0 85.0 83.4 53.9 69.7 59.9 78.4

Mixture Data + learnable backbone 91.2 90.1 90.1 87.2 85.5 85.7 83.9 85.1 84.4 84.6 67.8 71.4 69.0 76.2

that using our collected data for fine-tuning can improve object
segmentation and top-down grasping consequently.

With accurate object segmentation, top-down grasp planning
can be achieved in an analytic way. A top-down grasp for a
two-finger gripper is defined as the 3D location p = (x, y, z),
orientation θ of the gripper in the x, y plane and the width w
between the two fingers, where axis-z is the gravity direction.
The grasping position p is defined as the object center, where
the object center is computed as the mean of the segmented
point cloud of the object. The grasping orientation θ is
computed to align the gripper with the second largest principal
component of the object point cloud in the x, y plane. In this
way, the robot can grasp the narrower side of a long object.
Finally, the width between the two fingers is determined by
the width of the object along the second largest principal
component of the object point cloud in the x, y plane. It can
be shown that if the center of mass of the object is the same
as the object center, a grasp computed in this way can achieve
force closure. The described grasp planning algorithm relies
on accurate segmentation of all the objects in a scene. We can
use it to verify the benefit of our system in collecting data to
improve object segmentation for robot grasping.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

Data Collected by the Robot. We used a set of play food
for kids as the objects for robot interaction. For reproducibility,
these objects can be purchased from [1]. A Fetch mobile
manipulator is used for data collection. Five different objects
are used in each scene, and the robot performs around 20
pushing actions for each scene to collect images before and
after each pushing action. In total, we collected images from
20 scenes. Images from 15 scenes are used for fine-tuning and
the remaining images are used for testing the fine-tuned model
in the same domain. Specifically, 321 images are used for fine-
tuning, while 107 images are available for testing. Each image
contains an average of 6 objects, but no more than 8 objects.

Evaluation Datasets. We evaluate the performance of our
fine-tuned models on the pushing test dataset from our system,
the Object Clutter Indoor Dataset (OCID) [28] and the Object
Segmentation Database (OSD) [25]. The dataset from robot
interaction is in the same domain as our collected data for fine-
tuning, whereas OCID and OSD are in the different domains.
The OCID dataset contains 2,390 RGB-D images, with at most
20 objects and on average 7.5 objects per image. The OSD

dataset is composed of 111 RGB-D images, with up to 15
objects and an average of 3.3 objects per image.

Evaluation Metrics. We analyze the object segmentation
performance through precision, recall, and F-measure [39, 38].
To obtain the values for these three metrics, we initially
calculate the values between all pairs of predictions and
ground truth objects. Subsequently, we employ the Hungarian
algorithm with pairwise F-measure to match predictions with
the ground truth objects. Consequently, the precision, recall,
and F-measure are determined by P =

∑
i|ci∩g(ci)|∑

i|ci|
, R =∑

i|ci∩g(ci)|∑
j |gj |

, F = 2PR
P+R , where ci indicates the segmentation

for the predicted object i, g (ci) is the segmentation for the
corresponding ground truth object of ci, and gj denotes the
segmentation for the ground truth object j. Overlap P/R/F
are the above three metrics when the intersection over union
between two segmentation masks is used to determine the
amount of true positives. Boundary P/R/F are also used
to measure the sharpness of the predicted boundary against
the ground truth boundary, where the intersection pixels of
the two boundaries determines the amount of true positives.
Additionally, Overlap F-measure ≥ 75% is the percentage of
objects segmented with a certain accuracy [23].

B. Ablation Studies on the Fine-tuning Strategies

We first investigate how to fine-tune the pre-trained segmen-
tation networks with our collected real-world data. Regarding
the training data for fine-tuning, we have two types of data:
the 321 real-world images obtained via robot pushing and the
synthetic images from the Tabletop Object Dataset [39]. The
synthetic dataset consists of 280,000 RGB-D images which
is used for training most unseen object instance segmentation
networks [39, 38, 19]. In this work, we use the MSMformer
model [19] trained on the Tabletop Object Dataset for fine-
tuning, since it achieves very competitive performance and
is end-to-end trainable. MSMformer consists of two stages
in segmenting objects, where the first stage segments the
whole input image while the second stage performs zoom-in
refinement for each segment from the first stage.

We have two choices on using these data for fine-tuning: i)
using the real-world images only, ii) using both real-world
images and synthetic images. On the other hand, we have
two choices on how to fine-tune the backbone network in
MSMFormer: i) fixing the backbone during fine-tuning, ii)
fine-tuning the backbone. We conduct ablation studies on the
four combinations and present the results on the OCID and

TABLE II
UOIS RGB-D RESULTS ON OCID AND OSD WITH DIFFERENT NUMBER OF SCENES FOR FINE-TUNING THE FIRST-STAGE MSMFORMER MODEL.

of scenes # of images
OCID (2390 images) OSD (111 images)

Overlap Boundary Overlap Boundary
P R F P R F %75 P R F P R F %75

MSMFormer [19] 0 88.4 90.2 88.5 84.7 83.1 83.0 80.3 79.5 86.4 82.8 53.5 71.0 60.6 79.4
3 62 89.7 89.8 88.7 82.8 85.5 83.0 85.3 83.6 85.8 84.6 58.7 75.4 65.5 80.6
6 124 91.0 89.1 89.5 80.7 85.0 82.0 87.0 83.7 85.1 84.3 59.1 74.6 65.3 78.0
9 190 91.4 89.6 90.0 83.7 85.6 84.0 86.0 83.9 86.4 85.1 58.6 76.4 65.8 81.0

12 256 92.1 89.7 90.3 86.2 84.9 84.9 86.3 87.6 86.6 87.0 64.6 77.5 69.7 85.6
15 (All) 321 91.2 90.1 90.1 87.2 85.5 85.7 83.9 85.1 84.4 84.6 67.8 71.4 69.0 76.2

TABLE III
UOIS RESULTS ON A TRAINING DOMAIN DATASET. *: THE MODEL AFTER

FINE-TUNING. MF STANDS FOR MSMFORMER [19].

Method
Same Domain Dataset (107 images)

Overlap Boundary
P R F P R F %75

RGB Input with ResNet-50 backbone
MF [19] 81.7 81.7 81.6 75.7 73.1 73.7 66.2
MF* 90.6 92.7 91.6 87.3 88.6 87.6 90.7
MF+Zoom-in 75.9 81.0 78.1 68.0 63.7 65.1 61.6
MF+Zoom-in* 90.1 89.6 89.7 88.0 84.4 85.5 83.5
MF*+Zoom-in 83.2 90.9 86.7 74.4 78.2 75.8 85.5
MF*+Zoom-in* 91.0 93.3 92.1 89.7 89.6 89.3 92.2

RGB-D Input with ResNet-34 backbone
MF [19] 85.8 88.9 87.2 81.7 78.7 79.9 75.1
MF* 90.9 91.9 91.3 86.5 85.9 85.9 84.8
MF+Zoom-in 88.9 89.8 89.3 86.6 84.4 85.3 80.7
MF+Zoom-in* 90.7 90.2 90.4 86.0 85.9 85.6 84.3
MF*+Zoom-in 91.0 91.9 91.3 89.6 87.2 88.2 87.0
MF*+Zoom-in* 92.5 91.9 92.1 89.3 87.8 88.3 88.0

the OSD datasets in Table I.
We fine-tune the models for 6 epochs as the training loss

converges quickly, where each epoch loops over the 321 real-
world images once. We employ the AdamW optimizer [18]
with the learning rate 1e-5. We set the batch size as 4. When
using the mixture dataset for fine-tuning, for the first-stage
model of MSMFormer, we randomly select 2 samples from the
synthetic dataset and 2 samples from the real-world pushing
dataset for each batch. For the second-stage model (zoom-in
model), each batch has 3 random samples from the synthetic
dataset and 1 pushing sample. Since the second stage model
has 8 decoder layers, it tends to overfit to the real images
due to its high complexity. Therefore, we use more synthetic
images in a batch for the second-stage model.

Table I shows that the performance of MSMFormer fine-
tuned only using the small number of real-world pushing
data is worse on the OCID dataset. This is due to overfitting
to these real data. Using both the synthetic data and the
real-world data for fine-tuning improves performance on both
datasets. Using the mixture dataset is motivated by continual
learning approaches such as [2, 3] which maintains a buffer of
previously seen data. In our case, we can consider the synthetic
dataset to be a data buffer. Table I also reveals that using
learnable backbones achieves better performance than fixed
backbones due to more flexibility in learning. According to
these results, our fine-tuning strategy is to train the pretrained
MSMFormer with mixture data and learnable backbones. We
use this fine-tuning strategy in the following experiments.

C. Ablation Studies on the Number of Fine-tuning Images

Our collected pushing training set has 15 scenes in total.
We investigate the correlation between the number of images
and the performance of the fine-tuned model. We partition the
training set according to scenes and gradually add more scenes
to the fine-tuning dataset. Table II shows the performance of
the MSMFormer models fine-tuned with datasets in different
sizes. We can see that, the performance on the OCID and
OSD datasets continually improves as the amount of scenes
expands. After 12 scenes, the model performance begins to
saturate. According to this experiment, a small number of
real-world images for fine-tuning is sufficient, which avoids
collecting a large number of images in the real world for fine-
tuning. We use all the 15 scenes with 321 images for fine-
tuning in the following experiments.

D. Object Instance Segmentation in the Same Domain

Table III presents the evaluation results on the 107 real-
world test images of the models before and after fine-tuning.
Since the pushing test dataset has the same settings as the fine-
tuning dataset, we view the pushing test dataset as in same
domain. It is clear that the fine-tuned models significantly
improve the segmentation accuracy in the same domain. Imag-
ine a robot entering a new domain, it can utilize our system
to collect a few images to improve object segmentation in
this new domain. We experiment fine-tuning both the RGB
version and the RGB-D version of MSMFormer. In addition,
we investigate the effect of fine-tuning on each stage of the
segmentation network. “Zoom-in” in Table III indicates the
second-stage network. From the table, we can see that fine-
tuning consistently improves the performance over the original
models. The best performance is achieved by fine-tuning both
stages of MSMFormer.

Generally, RGB-D models tend to surpass RGB models due
to the additional depth input. However, we can observe that
the fine-tuned two-stage RGB model (RGB with zoom-in)
achieves the same Overlap F-measure and a higher Bound-
ary F-measure compared to the fine-tuned two-stage RGB-
D model. This result indicates that it is possible to segment
unseen objects with RGB images only as long as we can
obtain RGB training images with ground truth labels. Our
system provides a solution by utilizing robot interaction for
data collection. It is worth noting that using RGB images only
is valuable since certain objects such as transparent objects or
metal objects cannot be captured well by depth images.

TABLE IV
UOIS RESULTS ON THE OCID AND OSD DATASETS. * INDICATES A MODEL AFTER FINE-TUNING. #: [5] USED DIFFERENT TRAINING SET.

Method Input
OCID (2390 images) OSD (111 images)

Overlap Boundary Overlap Boundary
P R F P R F %75 P R F P R F %75

MRCNN [17]

RGB

77.6 67.0 67.2 65.5 53.9 54.6 55.8 64.2 61.3 62.5 50.2 40.2 44.0 31.9
UCN [38] 54.8 76.0 59.4 34.5 45.0 36.5 48.0 57.2 73.8 63.3 34.7 50.0 39.1 52.5
UCN+Zoom-in [38] 59.1 74.0 61.1 40.8 55.0 43.8 58.2 59.1 71.7 63.8 34.3 53.3 39.5 52.6
Mask2Former [9] 67.2 73.1 67.1 55.9 58.1 54.5 54.3 60.6 60.2 59.5 48.2 41.7 43.3 32.4
MF [19] 72.9 68.3 67.7 60.5 56.3 55.8 52.9 63.4 64.7 63.6 48.6 47.4 47.0 40.2
MF* 80.3 81.0 78.5 67.9 70.8 67.4 73.1 63.5 71.7 66.8 44.8 56.2 48.7 49.8
MF+Zoom-in [19] 73.9 67.1 66.3 64.6 52.9 54.8 52.8 63.9 63.7 62.7 51.6 45.3 47.0 41.1
MF+Zoom-in* 76.6 71.1 70.4 68.1 57.8 59.8 58.7 69.8 69.1 69.0 54.8 52.2 52.5 50.7
MF*+Zoom-in 79.5 77.1 75.5 68.9 64.8 64.6 68.3 63.4 71.5 66.6 47.0 55.0 49.4 52.0
MF*+Zoom-in* 83.5 82.1 80.6 74.1 72.5 71.7 77.9 66.2 72.3 68.4 50.3 56.8 52.0 56.0
MRCNN [17]

Depth
85.3 85.6 84.7 83.2 76.6 78.8 72.7 77.8 85.1 80.6 52.5 57.9 54.6 77.6

UOIS-Net-2D [39] 88.3 78.9 81.7 82.0 65.9 71.4 69.1 80.7 80.5 79.9 66.0 67.1 65.6 71.9
UOIS-Net-3D [40] 86.5 86.6 86.4 80.0 73.4 76.2 77.2 85.7 82.5 83.3 75.7 68.9 71.2 73.8
MRCNN [17]

RGB-D

79.6 76.7 76.6 68.7 63.7 64.3 62.9 66.4 64.8 65.5 53.7 43.8 47.5 37.1
UCN [38] 86.0 92.3 88.5 80.4 78.3 78.8 82.2 84.3 88.3 86.2 67.5 67.5 67.1 79.3
UCN+Zoom-in [38] 91.6 92.5 91.6 86.5 87.1 86.1 89.3 87.4 87.4 87.4 69.1 70.8 69.4 83.2
UOAIS-Net [5] # 70.7 86.7 71.9 68.2 78.5 68.8 78.7 85.3 85.4 85.2 72.7 74.3 73.1 79.1
Mask2Former [9] 78.6 82.8 79.5 69.3 76.2 71.1 69.3 75.6 79.2 77.3 54.1 64.0 58.0 65.2
MF [19] 88.4 90.2 88.5 84.7 83.1 83.0 80.3 79.5 86.4 82.8 53.5 71.0 60.6 79.4
MF* 91.2 90.1 90.1 87.2 85.5 85.7 83.9 85.1 84.4 84.6 67.8 71.4 69.0 76.2
MF+Zoom-in [19] 92.5 91.0 91.5 89.4 85.9 87.3 86.0 87.1 86.1 86.4 69.0 68.6 68.4 80.4
MF+Zoom-in* 91.3 91.3 91.0 87.7 84.4 85.6 86.2 86.6 82.9 84.4 68.9 69.6 68.6 76.3
MF*+Zoom-in 92.7 91.6 91.9 89.9 86.5 87.8 87.1 85.5 84.6 84.8 68.3 65.9 66.7 75.5
MF*+Zoom-in* 91.5 91.8 91.3 88.2 84.8 86.1 87.1 87.6 82.6 84.4 70.8 68.5 68.9 75.8

Image

Before
Fine-tuning

After
Fine-tuning

Different Domain Same Domain

RGB

Different Domain Same Domain

RGB-D

Fig. 5. Illustration of the effect of fine-tuning of the MSMFormer. The fine-tuning of the model allows it to distinguish objects that are stacked or adjacent
to each other, where the original model cannot separate these objects.

E. Object Instance Segmentation across Domains

To evaluate the performance of the fine-tuned models across
domains, we test them on the OCID and OSD datasets and
compare the achieved results with the state-of-the-art methods
in Table IV. From the table, we can see that the fine-tuned
models improve over the state-of-the-art methods on the OCID
dataset for both RGB and RGB-D input. On the OSD dataset,
UOAIS-Net [5] achieves better performance for RGB-D input
by utilizing photo-realistic synthetic images for training.

In most cases, the fine-tuning strategy consistently improves
the pre-trained models with synthetic images. However, the
RGB-D fine-tuned zoom-in refinement is not as effective as
the original zoom-in refinement on the OCID dataset. The

primary reason for this is that the environment and objects in
our pushing dataset are simpler and more restricted than those
presented in the OCID dataset. The combination of the fine-
tuned first-stage model and the original zoom-in part is more
effective on the OCID dataset. We visualize the differences of
using the original models and fine-tuned models on different
datasets in Fig. 5. The fine-tuned models are able to separate
adjacent objects to mitigate the under-segmentation problem in
the same domain as the fine-tuning images as well as different
domains in the OCID and OSD datasets.

F. Top-Down Grasping with Object Instance Segmentation

We show the usefulness of the proposed system for grasping
unknown objects in a table-top setting where the objects are

Fig. 6. Setup for top-down grasping with segmentation. Robot images on each column show the three stages: approach, pickup and placing in the bin.

Fig. 7. Examples of scene configurations
with varying amount of clutter.

Scene B: Low-Med SeparationScene A: Low Separation

Scene C: Med-High Separation Scene D: High Separation

TABLE V
GRASP SUCCESS WITH

DIFFERENT SCENE
CONFIGURATIONS.

Obj. Set Baseline2 Fine-tune3

1-A 0 5
1-B 0 5
1-C 1 3
1-D 5 4
Total 6 17
2-A 4 4
2-B 1 3
2-C 1 5
2-D 5 3
Total 11 15
Overall 17/40 32/40

placed in a cluttered environment. A Fetch mobile manipulator
is used for the experiments with its parallel jaw gripper for
grasping, and built in RGB-D camera for perception. We
compute the top-down grasp after segmenting all the objects
in the scene via the procedure described in Section IV-B. We
formulate the experiment as a pick-and-place task where the
goal is to clear the table and place all the objects in a nearby
bin. One example is shown in Fig. 6.

The experiment is conducted with two sets of unknown
objects (i.e., not seen during fine-tuning or training) with each
set containing five objects. For each object set, we consider the
pick-and-place task with four different initial configurations
of the object placement on the table, ranging from highly
cluttered to well separated as shown in Fig. 7. The pick-
and-place grasping trials are conducted with the baseline2 and
fine-tuned3 segmentation models with RGB-D input for each
configuration to bring out the relative improvement of fine-
tuning on data collected using the proposed method.

Given a configuration for object arrangement on the table,
there are five pick-and-place trials associated with each of
the five objects. A trial is counted as a success if a grasp
of an object guided by its segmentation boundary allows for a
successful pick-and-place operation, otherwise its counted as a
failure. A hard-failure occurs for a scene if the segmentation
masks are incorrect in the beginning, with the 5 objects in
the scene. Such an error is not favorable due to possibility of
collision and damage of the gripper and hence the grasping

2Baseline: MSMFormer R34 + Zoom-in in Table V-A
3Fine-tuned: MSMFormer R34* + Zoom-in* in Table V-A

is stopped in this case, and none of the objects count towards
the success rate metric. It potentially occurs if the segmenta-
tion model is not able to establish clear boundaries between
nearby objects which induces errors in the grasping pipeline,
specifically in positioning the gripper for picking up the object.
For example, cases 1-A and 1-B with the baseline model in
Table V are hard failures due to segmentation error at the
very start. Consequently, no feasible grasping motion is found
for any object in the scene and hence they have no score for
the respective trials. Therefore, accurate object segmentation
is critical for grasping in cluttered scenes.

We obtain data for the 40 individual trials (10 objects in
total, across 4 table-top configurations for each) for each of
the baseline and fine-tuned models and report their number
of successful actions. As seen in Table V, we see a clear im-
provement in the grasp success rate when using the fine-tuned
model, especially in scenes with high clutter. This highlights
the need for precise segmentation masks of objects in cluttered
scenes as any errors in this stage likely affect downstream
applications like grasping. Additional details and qualitative
results will be provided in the supplementary material.

VI. CONCLUSION AND FUTURE WORK

We introduced a robotic system for self-supervised unseen
object instance segmentation. Our system leverages robot
pushing to interact with objects and collect images before and
after each pushing action. In order to generate segmentation
masks of objects in the collected images, the system allows the
robot to push objects until a sequence of images is collected,
then an optical flow based multi-object tracking algorithm and
a video object segmentation method are combined to segment
object instances in the collected images automatically. Using a
sequence of images from robot pushing enables the system to
segment all the objects in the sequence including objects that
are very close to each other. To the best of our knowledge,
this is a first system that leverages long-term robot interaction
for object segmentation.

We verify the usefulness of the system by using the
collected images to fine-tune object segmentation networks.
Our experiments show that the fine-tuned networks achieve
better segmentation accuracy both in the same domain and in
different domains. We also demonstrate that improving object

segmentation with fine-tuning benefit top-down robot grasping
in a pick-and-place task, where accurate object segmentation
can be used to plan grasps in cluttered scenes.

For future work, we plan to extend the system beyond
tabletop scenarios such as segmenting objects inside bins or
cabinets. Robot interaction in these environments requires
motion planning to account for the constraints from the
environments. Robot pushing may not be sufficient in these
environments. We plan to investigate different interaction
actions such as grasping and scooping for data collection.

ACKNOWLEDGMENTS

This work was supported in part by the DARPA
Perceptually-enabled Task Guidance (PTG) Program under
contract number HR00112220005. Kaiyu Hang is supported
by NSF CMMI-2133110.

REFERENCES

[1] Play food for kids. https://www.amazon.com/gp/product/
B08W2QH95R/ref=ppx yo dt b asin title o02 s01?
ie=UTF8&psc=1.

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In Proceedings
of the European conference on computer vision (ECCV),
pages 139–154, 2018.

[3] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuyte-
laars. Task-free continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11254–11263, 2019.

[4] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele.
People-tracking-by-detection and people-detection-by-
tracking. In 2008 IEEE Conference on computer vision
and pattern recognition, pages 1–8. IEEE, 2008.

[5] Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun
Noh, Raeyoung Kang, Seongho Bak, and Kyoobin Lee.
Unseen object amodal instance segmentation via hi-
erarchical occlusion modeling. In 2022 International
Conference on Robotics and Automation (ICRA), pages
5085–5092. IEEE, 2022.

[6] Jonathan C Balloch, Varun Agrawal, Irfan Essa, and
Sonia Chernova. Unbiasing semantic segmentation for
robot perception using synthetic data feature transfer.
arXiv preprint arXiv:1809.03676, 2018.

[7] Jeannette Bohg, Karol Hausman, Bharath Sankaran,
Oliver Brock, Danica Kragic, Stefan Schaal, and Gau-
rav S Sukhatme. Interactive perception: Leveraging
action in perception and perception in action. IEEE
Transactions on Robotics, 33(6):1273–1291, 2017.

[8] Liang-Chieh Chen, George Papandreou, Iasonas Kokki-
nos, Kevin Murphy, and Alan L Yuille. Deeplab: Se-
mantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE trans-
actions on pattern analysis and machine intelligence, 40
(4):834–848, 2017.

[9] Bowen Cheng, Ishan Misra, Alexander G Schwing,
Alexander Kirillov, and Rohit Girdhar. Masked-attention
mask transformer for universal image segmentation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1290–1299, 2022.

[10] Ho Kei Cheng and Alexander G Schwing. Xmem: Long-
term video object segmentation with an atkinson-shiffrin
memory model. In European Conference on Computer
Vision, pages 640–658. Springer, 2022.

[11] Simon Christoph Stein, Markus Schoeler, Jeremie Papon,
and Florentin Worgotter. Object partitioning using local
convexity. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 304–
311, 2014.

[12] Alvaro Collet, Manuel Martinez, and Siddhartha S Srini-
vasa. The moped framework: Object recognition and
pose estimation for manipulation. The international
journal of robotics research, 30(10):1284–1306, 2011.

[13] Xinke Deng, Yu Xiang, Arsalan Mousavian, Clemens
Eppner, Timothy Bretl, and Dieter Fox. Self-supervised
6d object pose estimation for robot manipulation. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 3665–3671. IEEE, 2020.

[14] Maximilian Durner, Wout Boerdijk, Martin Sundermeyer,
Werner Friedl, Zoltán-Csaba Márton, and Rudolph
Triebel. Unknown object segmentation from stereo
images. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4823–4830.
IEEE, 2021.

[15] Andreas Eitel, Nico Hauff, and Wolfram Burgard. Self-
supervised transfer learning for instance segmentation
through physical interaction. In 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 4020–4026. IEEE, 2019.

[16] Peter R Florence, Lucas Manuelli, and Russ Tedrake.
Dense object nets: Learning dense visual object descrip-
tors by and for robotic manipulation. arXiv preprint
arXiv:1806.08756, 2018.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask r-cnn. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 2961–
2969, 2017.

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. arXiv preprint arXiv:1711.05101,
2017.

[19] Yangxiao Lu, Yuqiao Chen, Nicholas Ruozzi, and Yu Xi-
ang. Mean shift mask transformer for unseen object
instance segmentation. arXiv preprint arXiv:2211.11679,
2022.

[20] Chaitanya Mitash, Kostas E Bekris, and Abdeslam
Boularias. A self-supervised learning system for object
detection using physics simulation and multi-view pose
estimation. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 545–
551. IEEE, 2017.

[21] Arsalan Mousavian, Clemens Eppner, and Dieter Fox.

https://www.amazon.com/gp/product/B08W2QH95R/ref=ppx_yo_dt_b_asin_title_o02_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B08W2QH95R/ref=ppx_yo_dt_b_asin_title_o02_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B08W2QH95R/ref=ppx_yo_dt_b_asin_title_o02_s01?ie=UTF8&psc=1

6-dof graspnet: Variational grasp generation for object
manipulation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2901–
2910, 2019.

[22] Adithyavairavan Murali, Arsalan Mousavian, Clemens
Eppner, Chris Paxton, and Dieter Fox. 6-dof grasping for
target-driven object manipulation in clutter. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 6232–6238. IEEE, 2020.

[23] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmen-
tation of moving objects by long term video analysis.
IEEE transactions on pattern analysis and machine in-
telligence, 36(6):1187–1200, 2013.

[24] Deepak Pathak, Yide Shentu, Dian Chen, Pulkit Agrawal,
Trevor Darrell, Sergey Levine, and Jitendra Malik. Learn-
ing instance segmentation by interaction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 2042–2045, 2018.

[25] Andreas Richtsfeld, Thomas Mörwald, Johann Prankl,
Michael Zillich, and Markus Vincze. Segmentation
of unknown objects in indoor environments. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4791–4796. IEEE, 2012.

[26] Tanner Schmidt, Richard Newcombe, and Dieter Fox.
Self-supervised visual descriptor learning for dense cor-
respondence. IEEE Robotics and Automation Letters, 2
(2):420–427, 2016.

[27] Samuel Schulter, Paul Vernaza, Wongun Choi, and Man-
mohan Chandraker. Deep network flow for multi-object
tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6951–
6960, 2017.

[28] Markus Suchi, Timothy Patten, David Fischinger, and
Markus Vincze. Easylabel: A semi-automatic pixel-
wise object annotation tool for creating robotic rgb-d
datasets. In 2019 International Conference on Robotics
and Automation (ICRA), pages 6678–6684. IEEE, 2019.

[29] Martin Sundermeyer, Arsalan Mousavian, Rudolph
Triebel, and Dieter Fox. Contact-graspnet: Efficient 6-
dof grasp generation in cluttered scenes. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pages 13438–13444. IEEE, 2021.

[30] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs
field transforms for optical flow. In European conference
on computer vision, pages 402–419. Springer, 2020.

[31] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ in-
ternational conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017.

[32] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark
Brophy, Varun Jampani, Cem Anil, Thang To, Eric Cam-
eracci, Shaad Boochoon, and Stan Birchfield. Training
deep networks with synthetic data: Bridging the reality
gap by domain randomization. In Proceedings of the

IEEE conference on computer vision and pattern recog-
nition workshops, pages 969–977, 2018.

[33] Jonathan Tremblay, Thang To, Balakumar Sundar-
alingam, Yu Xiang, Dieter Fox, and Stan Birchfield. Deep
object pose estimation for semantic robotic grasping of
household objects. arXiv preprint arXiv:1809.10790,
2018.

[34] Alexander JB Trevor, Suat Gedikli, Radu B Rusu, and
Henrik I Christensen. Efficient organized point cloud
segmentation with connected components. Semantic
Perception Mapping and Exploration (SPME), 2013.

[35] Kentaro Wada, Edgar Sucar, Stephen James, Daniel
Lenton, and Andrew J Davison. Morefusion: Multi-
object reasoning for 6d pose estimation from volumetric
fusion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 14540–
14549, 2020.

[36] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learn-
ing to track: Online multi-object tracking by decision
making. In Proceedings of the IEEE international con-
ference on computer vision, pages 4705–4713, 2015.

[37] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network
for 6d object pose estimation in cluttered scenes. arXiv
preprint arXiv:1711.00199, 2017.

[38] Yu Xiang, Christopher Xie, Arsalan Mousavian, and
Dieter Fox. Learning rgb-d feature embeddings for
unseen object instance segmentation. In Conference on
Robot Learning, pages 461–470. PMLR, 2021.

[39] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Di-
eter Fox. The best of both modes: Separately leveraging
rgb and depth for unseen object instance segmentation. In
Conference on robot learning, pages 1369–1378. PMLR,
2020.

[40] Christopher Xie, Yu Xiang, Arsalan Mousavian, and
Dieter Fox. Unseen object instance segmentation for
robotic environments. IEEE Transactions on Robotics,
37(5):1343–1359, 2021.

[41] Houjian Yu and Changhyun Choi. Self-supervised in-
teractive object segmentation through a singulation-and-
grasping approach. In European Conference on Com-
puter Vision, pages 621–637. Springer, 2022.

[42] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo,
Ed Walker, Alberto Rodriguez, and Jianxiong Xiao.
Multi-view self-supervised deep learning for 6d pose
estimation in the amazon picking challenge. In 2017
IEEE international conference on robotics and automa-
tion (ICRA), pages 1386–1383. IEEE, 2017.

[43] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data
association for multi-object tracking using network flows.
In 2008 IEEE conference on computer vision and pattern
recognition, pages 1–8. IEEE, 2008.

[44] Lu Zhang, Siqi Zhang, Xu Yang, and Zhiyong Liu.
Unseen object instance segmentation with fully test-
time rgb-d embeddings adaptation. arXiv preprint
arXiv:2204.09847, 2022.

	Introduction
	Related Work
	Unseen Object Instance Segmentation
	Self-Supervised Robot Perception

	Self-Supervised Unseen Object Instance Segmentation
	System Overview
	Data Collection via Robot Pushing
	Optical Flow-based Multi-Object Tracking
	Mask Propagation via Long-Term Object Segmentation

	Applications
	Transfer Learning for Object Segmentation
	Top-Down Robot Grasping

	Experiments
	Datasets and Evaluation Metrics
	Ablation Studies on the Fine-tuning Strategies
	Ablation Studies on the Number of Fine-tuning Images
	Object Instance Segmentation in the Same Domain
	Object Instance Segmentation across Domains
	Top-Down Grasping with Object Instance Segmentation

	Conclusion and Future Work

