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Abstract—For many robotic manipulation and contact tasks,
it is crucial to accurately estimate uncertain object poses, for
which certain geometry and sensor information are fused in
some optimal fashion. Previous results for this problem primarily
adopt sampling-based or end-to-end learning methods, which yet
often suffer from the issues of efficiency and generalizability. In
this paper, we propose a novel differentiable framework for this
uncertain pose estimation during contact, so that it can be solved
in an efficient and accurate manner with gradient-based solver.
To achieve this, we introduce a new geometric definition that is
highly adaptable and capable of providing differentiable contact
features. Then we approach the problem from a bi-level perspec-
tive and utilize the gradient of these contact features along with
differentiable optimization to efficiently solve for the uncertain
pose. Several scenarios are implemented to demonstrate how the
proposed framework can improve existing methods.

I. INTRODUCTION

Contact has always been considered the challenging part of
robot manipulation. Unlike free-space motion, contact con-
straints are complex to model, complicated to numerically
solve, and difficult to find an appropriate strategy to handle
well. As a result, learning-based methods have been widely
adopted in this field, with many impressive results to date
[3, 29, 15]. Learning-based methods are essentially sampling-
based methods with forward-directed results. That is, they
involve collecting data from the actions, analyzing the results,
and learning how to produce the best results. But they are data-
dependent, often produce noisy results, and generalization is
difficult. Some techniques such as domain randomization [39]
are often utilized, yet it is deemed still necessary to develop
more structured and reliable methods.

From this perspective, the topic of differentiable physics
has recently emerged. By building differentiable formulation,
gradient-based methods can replace many of the sampling
requirements, improving generalization performance and effi-
ciency. As a result, these techniques have proven to be useful
in a variety of applications, including trajectory optimization
[9, 14], policy gradient [47], system identification [21] and
design optimization [46]. However, the use of differentiable
modeling in contact-intensive tasks that require responding to
uncertain environments, such as robot assembly and place-
ment, has not been well addressed.

In this paper, we present a novel differentiable framework
which estimates the uncertain pose during contact tasks from
sensor measurements. Our framework has a wide range of
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Fig. 1: Graphical abstracts illustrating our differentiable pose estima-
tion during contact. Left: A peg-in-hole task performed in a hole with
pose uncertainty along the x and y directions. Right: Visualization of
the differentiable cost landscape and the gradient-based optimization
process utilizing force/torque sensor information acquired through
interactions (Green dot: true uncertainty parameter).

applications, from simple external impact localization to inter-
active manipulation such as peg-in-hole assembly. The main
contribution of this paper is: 1) we devise a new geometry
representation based on a prescribed support function which
guarantees to provide differentiable contact features and their
efficient computation algorithm; and 2) an efficient bi-level
solution scheme based on differentiable optimization for un-
certain pose estimation problem. The proposed methods are
validated against both in simulation and experiment, demon-
strating the efficacy of our differentiable framework for contact
tasks.

The rest of the paper is organized as follows. Previous
studies related to our work are reviewed in Sec. II with some
preliminary materials presented in Sec. III. Sec. IV presents a
formal formulation of the uncertain pose estimation problem in
contact. Then in Sec. V, our novel prescribed support function
based geometry model for differentiable contact feature is
presented. Sec. VI describes bi-level solution scheme for the
estimation, based on the geometry model provided in Sec. V
and differentiable optimization. Various implementation sce-
narios with evaluations are provided in Sec. VII, followed by
concluding remarks and discussions in Sec. VIII.

II. RELATED WORKS

A. Differentiable Contact Formulation

Many existing studies [9, 12, 8, 14] use collision proxies
as simple shapes (point, sphere, plane, etc.). To our best
knowledge, attempts to utilize more general geometry have
begun to take place very recently. First, the scope geometry



is extended to convex primitives (e.g., cylinder, cone, padded
polygon) in [40] by utilizing implicit differentiation on conic
optimization. In [41] and [13], neural network-based implicit
functions such as a signed distance field (SDF) or neural
radiance field (NeRF [27]) are used. However, accurate mod-
eling of contact between the fields is not well-developed and
often rely on query point sampling [41, 20]. This can lead to
reduced applicability and may generate an excessive number
of contacts. In [28], an approach using randomized smoothing
with implicit differentiation of Gilbert-Johnson-Keerthi (GJK
[10]) optimality condition is proposed. However, the gradient
may not be consistent with the underlying geometry and may
still be myopic. Instead, we propose to define the object
shape through a prescribed support function which provides
a direct parametric representation of convex geometry and
allows for the exact computation of contact features. Moreover,
theoretical issues on degeneration is addressed, which have not
been dealt in previous studies.

B. Uncertainty Handling in Interaction

Multiple studies have explored the identification of uncer-
tainty in interaction, using a range of sensors. From visual
sensor measurements, 6D pose [6, 45] or inertial parameters
[26] estimation can be utilized in online during tasks. However,
vision sensors have limitations in that occlusion can occur,
they cannot cover the entire robot body, and are difficult to
achieve the high accuracy required for contact-intensive tasks
such as peg-in-hole [16].

Therefore, other sensors such as proprioceptive sensor,
force/torque (FT) sensor, or more recently vision-based tactile
sensors have also widely used. In many works, encoding
sensing measurements for use in manipulation heavily rely on
learning-based frameworks. For example, [22] combines vision
and FT sensor information using self-supervised learning. In
[16], a certain action is performed to acquire FT measurements
when contact occurs, and the plotted results are passed through
neural network to estimate of the peg pose. For tactile sensor,
the work in [42] estimates the pose of grasped object using
neural network and [13] perform tracking of extrinsic contact
between object and environment based on neural contact fields.
Similarly, [38] performs global localization of the finger and
object to a larger object and a long horizon. These methods
are data-dependent and may require re-learning as the use case
expands. Our work can be combined with these approaches
to better exploit the dynamic and kinematic structures, thus
improving performance and generalizability.

There also exist some model-based methods to estimate
certain information during contact. In [11], a comprehensive
survey is provided, but how to deal with object geometry
in tandem is rarely addressed. Studies that address geometry
and sensor information together rely primarily on sampling
strategies. For instance, contact particle filter (CPF) [25, 44]
presents the way for external contact localization using propri-
oceptive sensors or force sensors. Object grasp pose estimation
method is also conducted in [36] on the extension of CPF.
Similarly, [43] presents the Bayseian framework for multi-

(a) Contact features (b) MTD model (c) GD model

Fig. 2: Comparison of the minimum translation distance (MTD)
model and growth distance (GD) model contact features. Minkowski
sum is represented by the gray area. The penetration depth is indicated
by the blue segment, the contact witness points by the red points, and
the contact normal by the black arrows.

modal fusion. These have limitations in that handling multiple
contacts is difficult or time-consuming and is inefficient owing
to the limitation of the sampling-based method, which only uti-
lizes forward-directed results. Recently, [24] and [18] develop
the optimization based extrinsic contact sensing frameworks
using various structured constraints. In comparison to above
works, we aim for a differentiable formulation that can be
applied to more general geometric types.

III. PRELIMINARY

A. Support Function

For a convex set C ⊂ R3, the support function h : R3 → R
is defined as

h(x) = max
s(x)∈C

xT s(x) (1)

where x ∈ R3 and s(x) ∈ C is the farthest point in
the x direction among the points in C, called the support
point. Rather than calculating the support function for a given
geometry, in this paper, we define the geometry of the object
using a prescribed support function.

B. Contact Features

The contact features we refer to in this paper are penetration
depth, witness points, and contact normal (see Fig. 2(a)).
For general convex shapes, the minimum translation distance
(MTD) model is widely adopted [10, 31, 35] to define contact
features. The model computes the closest point on the bound-
ary of the Minkowski sum [34] from the origin. However
as depicted in Fig. 2(b), the closest point may have a non-
unique solution. The non-uniqueness occurs commonly under
deep penetration and sharp geometry. Although this issue is
typically not so critical in simulation because it allows only
a small amount of penetration, it is not so for us, as we are
aiming for differentiable framework for general manipulation
programming, for which such non-uniqueness can pose a
serious issue.

In contrast, the growth distance (GD) model, first proposed
in [30], computes the growth factor that two objects “touch”
each other, i.e.,

min
σ

s.t. C1(σ) ∩ C2(σ) ̸= ∅ (2)



where σ ∈ R+ is the growth factor and C(σ) is an increased
convex set by the grwoth factor around a given center. The
model was intended to convert contact detection processes
from polyhedral objects to linear programming, but we are
more interested in the fact that it always guarantees uniqueness
of solution [51, 40]. This uniqueness can be easily identified
using the property that the problem is equivalently substituted
by the ray casting problem [51, 50] for Minkowski sum (see
also Fig. 2(c)).

C. Implicit Function Theorem

Consider the multi-variable equation:

F (x, y) = 0

where x ∈ Rnx , y ∈ Rny , and F : Rnx+ny → Rny

is the continuously differentiable function. Then the local
solution mapping between x and y is unique and continuously
differentiable satisfying

dy

dx
= −

(
∂F

∂y

)−1
∂F

∂x
(3)

if the partial Jacobian ∂F
∂y is non-singular. The implicit function

theorem enables the use of a function between multiple
variables based on an implicit relation.

IV. PROBLEM FORMULATION

The main purpose of this paper is to develop the differ-
entiable and general-purposed framework for uncertain pose
estimation in interaction. We define the basic structure of the
problem as follows:

Problem 1 (Uncertain Pose Estimation in Contact): Given
the measurement γ ∈ Rnγ , estimate uncertain pose parameter
ξ ∈ Rnξ through following optimization problem:

min
ξ,f∈C

1

2

∥∥∥∥∥∥γ −
m(ξ)∑
k=1

Pk(ξ)fk

∥∥∥∥∥∥
2

Σ−1

s.t. gk(ξ) ≥ 0, (gk(ξ))
+fk = 0 ∀k

(4)

where m is the number of collision, gk ∈ R, fk ∈ R3, Pk ∈
Rnγ×3 are the gap, contact force, and contact mapping matrix
(to the measurement) for the k-th contact. Note that Pk can be
expressed as a Jacobian matrix related to the contact witness
points and normal. Also, ∥ · ∥2Σ−1 is the Mahalanobis distance
defined under the covariance matrix Σ, (·)+ = max(·, 0), and
C denotes the friction cone set:

C = C1 × · · · × Cm
Ck = {fk | µkfk,n ≥ ∥fk,t∥}

(5)

with µ, n, t being the friction coefficient1, subscripts for the
normal and tangential direction.

Here, the measurement γ is typically the FT or joint torque
sensor value. It can also be a stack of measurements rather
than a single measurement. Problem 1 can be interpreted as

1In practice, it is difficult to accurately know the friction coefficient value,
so the rough upper value is mainly used.

finding the most likely pose and contact force that minimizes
the residual of the sensor measurements under several con-
straints, including the friction cone, non-penetration, and the
complementarity constraint that ensures the contact force only
acts when the gap is not bigger than zero.

Problem 1 can be seen as a generalization of the problem
in [25] to deal with the geometry of multiple objects, mul-
tiple contact interactions, and various types of uncertainty.
Moreover, by including additional cost in (4), it can be
combined with other sensor information (e.g., vision) as well
as dynamics condition (see also Sec. VI-D). As a result, it
has wide-ranging applications in robotics including grasp pose
identification, object tracking, and external impact localization
and is easily extensible. However, there are several challenges
to solving a problem: 1) the problem is nonlinear with multiple
complementarity constraints, and 2) the differentiability of
m, g, P is ambiguous, making it difficult to find a proper
gradient direction to optimize.

The following sections describe how to address this prob-
lem by making it differentiable. We begin by introducing a
geometric representation that enables us to represent g and P
in a differentiable manner.

V. DIFFERENTIABLE CONTACT FEATURES VIA
PRESCRIBED SUPPORT FUNCTION

The computation of differentiable contact features in prim-
itive shapes (e.g., sphere, plane) is simple, but its application
is limited. This section will describe a versatile and efficient
scheme based on a prescribed support function for common
convex geometry. The method will later be extended to broader
non-convex geometries by using a set of convex geometries.

A. Prescribing Support Function

Following theorem motivates us to model the geometry
using a prescribed support function.

Theorem 1 ([34]): If h : R3 → R is a sublinear function
that satisfies:

Positive homogeneity: h(λx) = λh(x) ∀λ ≥ 0, x ∈ R3

Subadditivity: h(x+ y) ≤ h(x) + h(y) ∀x, y ∈ R3

then there is a unique convex body corresponding to the
support function.
This theorem implies the one-to-one relationship between a
sublinear function and corresponding convex body.

The question remained is then how to define the prescribed
form of the support function. We first consider the set of ver-
tices i.e., v1, · · · , vn ∈ R3. This vertex set can be determined
by the user or obtained from data such as mesh or point
cloud. As it will be generalized under SE(3) transformation
in Sec. V-B), here we assume that the origin is inside the
convex hull of the vertices. Then we can easily find that the
support function of the geometry defined as a convex hull is
written as

h(x) = max
(
vT1 x, · · · , vTnx

)
(6)



(a) Proposed (b) Softmax

Fig. 3: Comparison of geometry obtained by the proposed support
function and the naive softmax support function based on exponential.
Vertex set is defined as {[1, 1], [1,−1], [−1, 1], [−1,−1]}.

which is discontinuous. Instead of the max operator, we use
a smoothed version of (6) for differentiable contact feature
computation. The proposed function form is as follows:

h(x) =

(
n∑

i=1

{
max(vTi x, 0)

}p) 1
p

(7)

where p > 2. Equation (7) is similar to the p-norm function,
but the abs(·) is replaced by max(·, 0), which naturally culls
negative elements. Then Theorem 2 summarizes an important
property of (7).

Theorem 2: Given vertex set v1, · · · , vn, the function (7) is
sublinear and twice-differentiable on R3 \ 0.

Proof: Positive homegeneity is trivial. Subadditivity can
be shown as

h(x) + h(y) =

(
n∑

i=1

{
(vTi x)

+
}p) 1

p

+

(
n∑

i=1

{
(vTi y)

+
}p) 1

p

≥

(
n∑

i=1

{
(vTi x)

+ + (vTi y)
+
}p) 1

p

≥

(
n∑

i=1

{
(vTi (x+ y))+

}p) 1
p

= h(x+ y)

using the Minkowski inequality, where max(·, 0) is simpli-
fied as (·)+. Therefore, the function is sublinear. Twice-
differentiablity can be easily verified by using the fact that

n∑
i=1

{
(vTi x)

+
}p

> 0

for x ∈ R3 \ 0 as the origin is inside the vertex set.
The properties in Theorem 2 is crucial, as it ensures that

any (7) always corresponds to some convex geometry - note
from Fig. 3 that other classes of support function are not
necessarily able to do so. Fig. 4 depicts various smoothed
geometries generated by the support function (7). We can find
that smoothness of the geometry can be easily adjusted using
p while retaining convexity and differentiability.

(a) Cube

(b) Dodecahedron

Fig. 4: Visualization of geometries represented by the prescribed
support function (7). From left to right, p = 5, 10, 20, 40 are used.

(a) Active contact (b) Inactive contact

Fig. 5: Visualization of the condition in (10). Support points (red
points) on both bodies extended by the growth factor should meet
exactly (blue point).

B. Support Point and SE(3) Transformation

From the definition of support function (1), support point
s(x) can be derived as follows:

s(x) = s(x) + xT ds

dx
=

dh

dx
(8)

since xT ds
dx = 0 holds from the homogeneity. Note that the

support point can be easily obtained since h(x) in (7) is
easy to differentiate. By computing support points (8) for
various x direction, we can visualize the corresponding shape
of geometry.

The support function h(x) and the point s(x) are defined for
the geometry that includes the origin. Such geometric repre-
sentation can be generalized to arbitrary poses through SE(3)
transformations. Given h and configuration vector q ∈ R7 (i.e.,
position and quaternion), the support function h̄ and support
point s̄ for q and x can be derived as follows:

h̄(q, x) = h(R(q)Tx) + p(q)Tx

s̄(q, x) = R(q)s(R(q)Tx) + p(q)
(9)

where p(q) ∈ R3 and R(q) ∈ SO(3) are the translation
and rotation by q. This transformation (9) is essentially
equivalent to converting x to the object local coordinate to
obtain s(R(q)Tx) and then converting it back to the global
coordinate. It can be easily verified that f̄ also satisfies the
property in Theorem 2, and further twice-differentiable for q.

C. Contact Feature Computation

We compute the contact features based on the GD model
described in Sec. III-B. However as also mentioned in [51], the



Algorithm 1 Contact Feature Solver

Initialize x, σ using IE procedure
Compute F, J for initialized value by (10),(11)
Initialize trust region radius δtr
while not converge do

Compute Newton step: ∆gn = −J−1F
Compute Cauchy step: ∆ca = −βJTF
Find dogleg step ∆dog by ∆gn, ∆ca, and δtr [33]
Update F, J under propagated point by ∆dog

Update δtr [33]
Update x, σ using ∆dog if the step accepted

end while
Compute differentiation by (12) and (13)

methods for functional surfaces rather than discrete geometries
are quite limited. In [51], using the equivalence of the GD
model and ray shooting problem, a method based on the in-
ternal expanding procedure is presented. In [40], optimization
(2) for convex primitives is formulated via conic optimization
and solved using primal-dual interior-point method. Here,
combined with our geometry definition described above, we
present an efficient and robust algorithm to solve GD model
and its differentiation. The key concept is to solve the GD
model as an unconstrained nonlinear equation by exploiting
the support function (7).

1) Nonlinear equation: Our unconstrained formulation em-
ploys the solution variables as x (i.e., normal vector for support
function input) and growth factor σ ∈ R, resulting in 4
dimensions. Then the conditions that the solution must satisfy
are: 1) the two support points of each body corresponding to
x coincide exactly when extended to σ; and 2) the normal
vector x has unit norm. Fig. 5 visualizes the equivalence
of these conditions and the growth distance model, both for
active (penetrated) and inactive (separated) contact cases. The
conditions described above can be formulated by the following
nonlinear equation: for given bodies i and j:

F (x, σ, q) =

[
σ(s̄i − s̄j) + (1− σ)(pi − pj)

∥x∥2 − 1

]
= 0 (10)

where s̄i = s̄i(x, qi), s̄j = s̄j(−x, qj) and p = p(q). The
contact detection process is then reduced to solve (10) with
respect to x, σ given the configuration qi and qj . Note that the
formulation is of fixed dimension (i.e., 4) regardless of the
number of vertices used. See Appendix B for the statements
on uniqueness of the solution.

2) Newton solver: Theorem 2 ensures that h is twice-
differentiable everywhere. Therefore we can always compute
the Jacobian of F in (10) as follows:

J =

[
∂F

∂x
,
∂F

∂σ

]
=

[
σ
(

ds̄i
dx +

ds̄j
dx

)
y

2xT 0

]
y = Risi(R

T
i x)−Rjsj(−RT

j x)

(11)

and (11) can be applied to Newton-type algorithm to solve
nonlinear equation in (10). Specifically, we utilize the trust-

(a) Proposed (b) Superquadrics

Fig. 6: Witness point change plots for two geometric modelings
according to rotation angle.

region-dogleg method [33] to achieve stable convergence prop-
erty. Due to the simple structure of (7), ds̄

dx is also very easy to
compute, much like s (see Appendix C for detailed derivation).
Consequently (and also due to its low-dimensionality), J can
be computed and solved in a highly efficient manner.

3) Initialization: Despite the fact that the trust-region-based
method ensures the stability of algorithm, determining a good
initial point is critical to practical performance. With a good
initialization, the Newton-based iteration is known to have
quadratic convergence. We find that the outcome of the first
iteration of the internal expanding (IE) procedure presented in
[51] is useful as an initial point. See Sec. VII-A for detailed
results.

D. Feature Differentiation

After obtaining the contact features, the differential values
can be computed and used to obtain the gradients for P and g
from (4). The conciseness of our GD model solver also makes
the process of obtaining contact feature differentiation very
efficient. Applying implicit differentiation to the nonlinear
equation (10), we get

∂F ∗

∂q
+ J∗

[
dx∗

dq
;
dσ∗

dq

]
= 0 (12)

where the superscript ∗ denotes the value at the solution. As
J∗ is only a 4 × 4 matrix (and its factorization have already
been computed in the solver step), we can obtain dx∗

dq and
dσ∗

dq (i.e., differentiation of contact normal and growth factor)
very efficiently. Moreover, differentiation of witness points are
simply computed as

ds̄∗i
dq

=
∂s̄∗i
∂q

+
∂s̄∗i
∂x

dx∗

dq
,

ds̄∗j
dq

=
∂s̄∗j
∂q

+
∂s̄∗j
∂x

dx∗

dq
(13)

where ∂s̄∗i
∂x and

∂s̄∗j
∂x are already available from the solver. Over-

all contact feature computation and differentiation procedure
is summarized in Alg. 1.

E. Analysis on Degeneration

As we can see in (12), J∗ should be non-singular in order
to avoid a degenerated situation. Although the degeneration
problem has not been well considered in previous studies,
it must be addressed in order to ensure the smooth relation
between variables using the implicit function theorem in



Sec. III-C. Without this consideration, pathological cases can
arise as demonstrated in [5]. In this paper, we theoretically
analyze the condition to avoid degeneration for our proposed
framework. We start by making the following assumption.

Assumption 1: ∀x ∈ R3 \ 0, there exists at least 3 linearly
independent vertices such that vTi x > 0.
This assumption is typically satisfied for shapes that require
a sufficient number of vertices to define their geometry, but
may not hold for very simple shapes such as a tetrahedron
with four vertices. To satisfy the assumption in such cases,
additional vertices can be added to the edges of the shape.
Based on this, we present the following lemma:

Lemma 1: ∂s̄
∂x is a positive semi-definite matrix. Moreover,

its rank is 2 under Assumption 1.
Proof: See Appendix D.

Based on the lemma, following theorem can be established:
Theorem 3: J∗ is non-singular under Assumption 1.

Proof: First, x cannot be 0 at the solution. Now suppose
that J∗ is singular, therefore for a nonzero vector z =
[z1, z2]

T , z1 ∈ R3, z2 ∈ R, J∗z = 0 holds i.e.,

σ

(
ds̄i
dx

+
ds̄j
dx

)
z1 + z2y = 0 (14)

xT z1 = 0 (15)

By multiplying xT to equation (14), we obtain:

xT

(
σ

(
ds̄i
dx

+
ds̄j
dx

)
z1 + z2y

)
= z2

(
xT y

)
= 0

holds. From the definition of support point, xT y > 0 holds,
therefore we get z2 = 0. Now z1 is supposed to be a non-zero
vector and perpendicular to x from (15). Also from the positive
semi-definite property in Lemma 1, we have ds̄i

dx z1 = 0, which
means the row space of ds̄i

dx must be perpendicular to both x
and z1. Because x and z1 are perpendicular to each other, this
contradicts the condition that the rank is 2. Therefore z cannot
be a non-zero vector, which means J∗ is non-singular.

The theorem provides assurance that a degenerated situation
can be avoided, given certain assumptions. This property is
generally applicable as the assumptions do not impose signif-
icant limitations on its usage. For demonstration, we conduct
a simple experiment that plots the change in the witness
point according to the rotation angle of the figure in 2D (see
Appendix E for illustration and details). As depicted in Fig. 6,
modeling using superquadrics always induces degeneration
(i.e., non-smoothness) even though the parametric equation is
smooth and strictly convex. Our method, on the other hand, is
always smooth and exhibits a stiffening pattern as p increases.

Remark 1: Non-singular property of J∗ is also useful in
terms of Newton-based solver (Alg. 1), as it guarantee that
the limit point of the sequence satisfies ∥F∥ = 0.

VI. BI-LEVEL OPTIMIZATION SOLVER

Combined with geometry modeling described above, in this
section, we present the overall gradient-based solution scheme
of the estimation problem (4).

Fig. 7: Example of convex decomposition for collisions between two
objects. The number of collision m = 4 for the left and m = 3 for
the right.

A. Predefined Number of Contact

From differentiable contact feature suggested in Sec. V,
P (ξ) and g(ξ) are already differentiable. Despite this, differen-
tiability of the overall problem is unclear because the number
of contacts m(ξ) can change discretely. We address this issue
by keeping the total number of collisions constant. When
two (possibly non-convex) interacting objects are present, we
decompose them into m1 and m2 convex geometries, respec-
tively. Each convex geometry is represented by the method in
Sec. V, therefore only a single collision occurs between them
constituting different objects. Accordingly, we can predefine
the collision number as constant, i.e., m(ξ) = m = m1m2.
See Fig. 7 for illustrative examples. Note that defined contacts
are not necessarily active. We can suppress contact forces for
inactive contact by imposing the constraint (gk(ξ))+fk = 0.

B. Differentiable Low-level Optimization

1) Smoothing and solving: For the fixed ξ, problem (4)
reduces to find the optimal contact force f∗ as

min
f∈C

1

2
∥γ − P (ξ)f∥2Σ−1 s.t. (gk(ξ))+fk = 0

which is a second-order cone programming (SOCP). Here,
the constraint (gk(ξ))

+
fk = 0 is only a C0 function as it

includes max operator. For better smoothness, we replace it
by a quadratic penalty term in the cost:

min
f∈C

1

2
∥γ − P (ξ)f∥2Σ−1 +

k0
2

∥∥D+
g (ξ)f

∥∥2 (16)

where k0 is a penalty coefficient, P = [P1, · · · , Pm], and
D+

g = blkdiag(g+1 I3, · · · , g+mI3). Then the cost is C1 function
for ξ, as each (gk(ξ))

+ is squared. The problem (16) is still
SOCP and compare to quadratic programming (QP) [4], it can
impose the friction cone without linearization, making it more
preferable. Optimality conditions of (16) can be written as

Hf + b = JT
c λ (17)

0 ≤ λk ⊥ ck ≥ 0 ∀k (18)

where ⊥ denotes the complementarity, H ∈ R3mc×3mc , b ∈
R3mc , and ck ∈ R are defined as

H = PTΣ−1P + k0
(
D+

g

)2
b = −PTΣ−1γ

ck = µfn,k − ∥ft,k∥



where (ξ) is omitted for simplicity, λ = [λ1, · · · , λm] ∈ Rm

is the Lagrange multiplier, and Jc ∈ Rm×3m is the Jacobian
dc
df . We can see that ck is non-smooth at fk = 0, implying that
singularity can occur. Indeed, the solution of fk = 0 is often
obtained, particularly in inactive contact. To relax this issue,
we propose to use the following smoothed ck instead:

ck = µfn,k −
√
f2
t1,k

+ f2
t2,k

+ ϵ (19)

where ϵ ∈ R+ is the small positive value. Our smoothing
scheme has several advantages. First, as the problem is still
strictly convex, its solution set is always singleton. Also, as
(19) is still analytic, we can resolve the problem efficiently
using projection based methods. Specifically, we utilize the
projected Gauss-Seidel (PGS) method [17] which is widely
used in physics simulation. In practice, the problem is solved
reliably and efficiently as PGS iteration converges to a solution
in a small number of iterations.

2) Differentiation: To utilize the gradient method in the
high-level optimization, the derivative of the solution of the
low-level optimization with respect to the target parameter ξ is
required. Based on the differentiable contact features in Sec. V,
differentiating (17) and (18) with respect to the parameter ξ
is possible, therefore

H
df∗

dξ
+

dH

dξ
f∗ +

db

dξ
= JT

c

dλ

dξ
+DΛ

df∗

dξ
(20)

dλk

dξ
ck + λk

dck
dξ

= 0 ∀k (21)

can be obtained at the optimal solution f∗ of (16) where
DΛ = blkdiag

(
λ1

d2c1
df∗

1
2 , · · · , λm

d2cm
df∗

m
2

)
. Here we can classify

(21) into two cases: ck = 0 and ck > 0:

ck = 0 : λk
dck
dξ = λkJc,k

df∗
k

dξ = 0

ck > 0 : dλk

dξ = 0

This allows us to exclude the components of λ that correspond
to inactive constraints (i.e., ck > 0) and reduce (20) and (21)
into following form:[

H −DΛ −JT
c,r

ΛrJc,r 0

][ df∗

dξ
dλr

dξ

]
=

[
−dH

dξ f
∗ − db

dξ

0

]
(22)

where λr and Jc,r are the reduced Lagrange multiplier and
Jacobian, respectively, and Λr is a diagonal matrix with the
diagonal entries being the elements of λr. In situations with
a positive definite H and no λk that simultaneously satisfy
λk = 0 and ck = 0, the equation is solvable (See Appendix F
for more details). Otherwise, the least-squares solution can be
employed instead [2].

C. High-level Optimization Solver

By substituting the obtained low-level solution f∗ and
handling the gap constraint gk(ξ) ≥ 0 as penalty functions,
we can formulate the high-level problem as

min
ξ

1

2
∥γ − P (ξ)f∗∥2Σ−1 +

k1
2

m∑
k=1

(
(−gk(ξ))

+
)2

(23)

Algorithm 2 Uncertain Pose Estimation in Contact

Initialize ξ1, · · · , ξN by sampling
for i = 1 to N do

while not converge do
Calculate f∗

i with ξi (16)
Calculate df∗

i

dξi
by solving (22)

Calculate the gradient of the cost function of (23)
Update ξi using Gauss-Newton algorithm

end while
end for
Determine the best ξ∗ among ξ∗1 , · · · , ξ∗N

where k1 is the penalty coefficient to penalize penetration
between objects. As we can obtain the gradient of f∗, (23)
is now a non-linear least squares problem with differentiable
error terms. Hence, we can use off-the-shelf algorithms such
as the Gauss-Newton method to solve the problem, which also
shows good convergence in practice.

Since the problem (23) is non-convex, there can be multiple
local minimum. To enhance the ability of our gradient-based
algorithm to discover global minimum, we adopt a strategy of
sampling the initial pose parameters and selecting the optimal
value from among them after optimization. The overall proce-
dure of our differentiable uncertainty estimation is summarized
in Alg. 2.

D. Augmentation

The nonlinear least squares problem (23) can be extended by
including various additional costs that reflect different aspects
of the problem being solved. Some examples are as follows:

1) Prior: Prior knowledge of the uncertain pose parameters
may be known in many cases. The following simple Gaussian
prior cost can be added in this case:

1

2
∥ξ − ξp∥2Σ−1

p

where ξp is the prior of ξ and Σp is the covariance matrix.
2) Bound constraint: The bound constraint can be intro-

duced to limit the range of uncertainty. In this case, penalty
function can be utilized:

1

2
∥(−ξ + ξl)

+∥2
Σ−1

l

+
1

2
∥(ξ − ξu)

+∥2
Σ−1

u

where ξl, ξu are the lower, upper bound of ξ and Σl,Σu are
the (typically low) covariance matrix.

3) Motion model: The pose parameters can sometimes
be estimated over multiple time intervals. In such cases, a
motion model can be introduced to better estimate the pose
parameters. See Sec. VII-D for an example.

VII. RESULTS AND EVALUATIONS

In this section, various simulation and experiment results
are presented to validate the proposed framework.



Fig. 8: Residual plots for IE and our method for 2 benchmark cases.

Solver IE Ours

Max Iteration 30 60 90 10 15 20

A-M
AT ↓ 50.30 85.75 134.8 23.66 27.29 29.27

MLR ↑ 3.905 5.587 6.271 5.262 8.109 9.954

M-S
AT ↓ 32.83 65.08 85.00 15.95 22.95 24.21

MLR ↑ 4.813 5.785 6.629 4.103 7.554 9.578

S-A
AT ↓ 45.62 75.05 108.9 22.11 24.63 26.97

MLR ↑ 4.962 5.645 5.998 5.099 8.043 9.729

TABLE I: Evaluation results for two contact feature (with its dif-
ferentiation) solvers. A, M, S are abbreviations for Apple, Mustard,
and Sponge, respectively. AT: average computation time (µs), MLR:
residual converted using − log(·) before being averaged, therefore
bigger is better).

A. Collision Detection

We conduct benchmark tests to verify the usefulness of
our geometric representations and contact feature computation
methods. We implement the baseline algorithm for GD model
as state-of-the-art internal expanding (IE) algorithm [51, 50]2,
which is proven to be better than GJK based method. We
employ 3 types of object from YCB dataset (Apple, Mustard,
and Sponge, see Appendix G for the images). Note that our
support function based geometric modeling applies to both.
With the residual defined as (10), the termination condition
is set based on its norm reaching 10−10. The performance is
recorded under various max iteration number.

Comparison results in Table I demonstrate that our method
outperforms the IE algorithm. It achieves faster and more
accurate convergence, typically within 20 iterations. Fig. 8
illustrates the convergence behavior, with our method showing
quadratic convergence after a few iterations, while the IE
algorithm exhibits first-order convergence. This showcases the
advantage of our Newton-type method utilizing the differential
value of contact features.

B. External Contact Localization

External contact localization problem [25], that determines
where the contact occurred on the robot arm, is one of the basic
examples of Problem 1. In this case, the uncertain parameter
ξ ∈ R3 is the collision point, and the measurement γ ∈ R7

is obtained from the joint torque sensor. We assume that

2While combination of IE with convex cone projection [49] was also
proposed, we find that using IE alone is more suitable for our 3D cases.

Fig. 9: 7-DoF manipulator where each link consists of differentiable
collision geometry

Noise Low High

Methods PF AGD Ours PF AGD Ours

Arm 5
AT ↓ 8.94 7.86 4.10 9.00 8.03 3.95

MLE ↑ 1.94 2.43 3.29 1.84 1.91 2.05

MLC ↑ 2.21 3.47 5.02 1.65 2.05 2.21

Arm 6
AT ↓ 9.46 7.64 3.95 9.38 8.04 3.93

MLE ↑ 2.13 3.17 3.67 1.99 2.12 2.19

MLC ↑ 1.99 3.90 5.03 1.75 2.16 2.39

Arm 7
AT ↓ 13.1 12.0 5.27 13.2 11.7 5.39

MLE ↑ 2.27 3.55 4.08 2.16 2.44 2.37

MLC ↑ 2.05 4.33 5.29 1.62 2.15 2.18

TABLE II: Evaluation results for the external contact localization. AT:
average computation time (ms), MLE/MLC: position error (m) and
cost value converted using − log(·) before being averaged, therefore
bigger is better.

contact occurs at a single point on a given link3, therefore
m = 1. Existing contact localization algorithms rely heavily
on sampling and retraction of points on the mesh, which is
computationally expensive. On these, we verify the efficacy
of our differentiable framework here.

For the test cases, Franka Emika Panda [1] is used, while
its links are represented by a convex hull of CAD data, as
shown in Fig. 9. Two baseline algorithms are employed for
comparison in our study. The first algorithm is a particle
filter (PF)-based method widely used in the literature [19, 25].
In each iteration, every particle is updated based on the
outcome of low-level problems and subsequently projected
onto the mesh. The second baseline algorithm is a more recent
approach that utilizes an approximated gradient descent (AGD)
combined with low-level problem differentiation [32]. Here
the gradient is approximated, as certain terms are disregarded.
Additionally, a projection step to the mesh is still required
since the derivative of contact features such as the gap and
normal vector is unavailable. Total 1000 trials are conducted
and for each trial, a random force is applied to a random
position on a link, and the accuracy and computation time
are recorded. For the contact particle filter method, we use
100 particles and iterated for 50 times for convergence. For
other two methods (AGD and ours) an initial 10 randomly
sampled points from the surface of geometry are used as initial

3Here, the contact is point-geometry contact, while the preceding contents
mainly describe geometry-geometry contact. However, the problem is still a
subset of Problem 1.



(a) Rectangular peg

(b) Hexagonal peg

Fig. 10: Snapshots of simulation results of peg-in-hole manipulation
using our uncertain pose estimation framework in online. Different
colors are used to represent convex-decomposed shapes.

guesses. Also, for both of the baseline methods, the low-level
optimization is performed using the same PGS-based approach
employed in our method.

The Table II shows the result of external contact localization
test, on various links under low/high sensor noise. As expected,
the particle filter exhibits the lowest performance due to
the necessity of conducting the lower-level optimization for
each particle and relying on exploration through randomness.
Furthermore, the convergence behavior of AGD is inferior
to ours because it is limited to first-order methods with an
approximated gradient and necessitates projection. In contrast,
our method leverages second-order Gauss-Newton optimiza-
tion with the exact gradient, leading to improved convergence.

C. Peg-in-Hole

Next, the proposed framework is tested on estimating the
uncertain grasp pose (i.e., the pose of the peg with respect to
the gripper) in peg-in-hole assembly task. Here the uncertain
parameter ξ ∈ R3 is the parameterized grasp pose (see
Appendix H for details) and the measurement γ ∈ R6 is from
the force/torque sensor on gripper. We assume that the gripper
and hole poses are known.

The experiment employs two distinct peg geometries: a
rectangular prism and a hexagonal prism. The rectangular
prism has eight vertices, while the hexagonal prism has twelve
vertices. As shown in Fig. 10, the hole is decomposed into a
total of 4 and 6 convex geometries, and the predefined numbers
of collisions m are 4 and 6, respectively.

For the evaluation, we first collect simulation data (FT
measurement, ground-truth grasp pose) in a contact situation
using the original geometry. Here, the data accumulated over
three contacts (i.e., γ ∈ R18) is used. The identification is then
performed using the proposed differentiable contact feature,
with three initial samples. For the baseline, we implement the
particle filter (PF)-based method similar to [36]. The PF solves
the high-level problem by using the grasp pose as particles

Noise Low High
Methods Ours PF25 PF50 Ours PF25 PF50

Rect

AT ↓ 9.22 44.1 89.1 10.7 43.7 89.3
MLPE ↑ 4.54 1.91 2.08 3.34 1.99 2.22
MLRE ↑ 3.72 1.06 0.94 2.47 0.83 1.16
MLC ↑ 5.74 -0.912 -0.66 2.03 -0.70 -0.19

Hexa

AT ↓ 18.6 100 197 16.6 99.4 192
MLPE ↑ 3.71 2.21 2.37 3.87 2.47 2.34
MLRE ↑ 2.58 0.87 1.10 2.50 1.06 1.07
MLC ↑ 3.28 -0.59 0.36 1.66 0.46 0.19

TABLE III: Evaluation results for the peg-in-hole assembly task. AT:
average computation time (ms). MLPE/MLRE/MLC: position error
(m), rotation error (rad) and cost value converted using − log(·)
before being averaged, therefore bigger is better.

Noise Low High
p 50 60 70 50 60 70

Rect

AT ↓ 8.98 9.10 9.22 9.71 9.31 10.7
MLPE ↑ 2.92 3.27 4.54 2.75 3.02 3.34
MLRE ↑ 2.11 2.48 3.72 1.91 2.29 2.47
MLC ↑ 3.43 4.32 5.74 2.03 1.95 2.03

Hexa

AT ↓ 15.5 18.2 18.6 16.5 16.1 16.6
MLPE ↑ 2.94 3.19 3.71 3.00 3.15 3.87
MLRE ↑ 1.97 2.13 2.58 2.06 2.03 2.50
MLC ↑ 1.75 2.11 3.28 1.32 1.24 1.66

TABLE IV: Evaluation results under various smoothing parameters.
AT: average computation time (ms). MLPE/MLRE/MLC: position
error (m), rotation error (rad) and cost value converted using − log(·)
before being averaged, therefore bigger is better.

with sampling strategy. For the low-level problem for each
particle, we take the same methodology of our framework for
better performance. Also, the number of particles is 25 (PF25)
and 50 (PF50).

The comparison results are summarized in Table III. A
total of ten datasets and two different amounts of noise
(standard deviations of 0.1 and 0.001) are used. The results
clearly demonstrate that the proposed method outperforms
the particle filter-based method in terms of accuracy and
efficiency. This highlights how the Gauss-Newton algorithm,
utilizing gradients, enables rapid convergence to a solution
with non-penetration and proper normal/witness points.

Furthermore, a comparative study is conducted by varying
the smoothing parameters within our framework. Specifically,
the smoothing parameter p is varied from 50 to 70. The results
are presented in Table IV. It can be observed that lower values
of p result in slightly shorter average computation times.
Conversely, higher values of p yield more accurate results as
they are closer to the original geometry. Consequently, future
investigations could focus on finding fast approximated solu-
tions through proper p-smoothing and refining them towards
the exact geometry under higher values of p.

Additionally, the estimation process can be performed on-
line, involving repeated trials and data augmentation until the
task is completed. Simulation snapshots of the peg-in-hole
assembly with online estimation are depicted in Fig. 10. For
the video, please refer to our supplementary material. Further
visualization results can be found in the Appendix H.



(a) Without motion model (b) With motion model

Fig. 11: Comparison result of the blind object tracking performance
with/without motion model. Green: End effector. Yellow: ground-
truth. Purple: Estimation result.

D. Augmentation: Blind Object Tracking

This subsection provides an example of augmenting our
framework with other models, as explained in Section VI-D.
Specifically, we focus on blind object tracking, which involves
tracking an object without relying on visual information during
the task. This capability proves beneficial in cluttered envi-
ronments or areas with limited lighting. To demonstrate blind
object tracking, we configure a pushing environment where
the interacting objects are represented by convex geometries
based on four vertices. It is worth noting that previous studies
[48, 37] have tackled similar tasks; however, many of them
simplified the shape of the tip to a point. In contrast, our
framework allows for a more versatile geometric represen-
tation, enabling its applicability to a broader range of end
effectors and object shapes. However, still diverse real-world
scenarios are remained for future research.

The uncertain parameter ξ and the FT measurement γ are
stack of values for multiple time intervals. Here, we adopt the
quasi-static motion model based on limit surface [23, 37] for
augmented cost. Note that all components in the model is a
function of ξ and f∗ therefore can be efficiently differentiated.
Ground truth data is obtained from the simulation environment
and compared to the estimated results. The results are illus-
trated in Fig. 11. The result from our vanilla cost formulation
(23) without motion model exhibits a noticeable bias error.
Conversely, when incorporating the motion model, the results
demonstrate a substantial improvement in accuracy (reducing
the RMSE by 30%).

E. Real World Experiment: Dish Placing

We deploy our framework in a dish placement task for
experimental validation in the real world. The manipulator is
built with Franka Emika Panda and a parallel gripper, and
ATI Gamma is utilized as the FT sensor. Three different
dishes are used, with a narrow-spaced dish rack. Test is
conducted as follow: a human makes the gripper to grasp
the dish in an arbitrary pose, and the robot identifies the
uncertain grasp pose through interaction with the ground.
In the identification process, Alg. 2 is employed while the
uncertain grasp parameter is modeled in 3-dimension and the
dishes are represented by a smoothed convex hull with a
prescribed support function. Following the identification, the

Fig. 12: Experimental demonstration of our framework in dish placing
task. Top left: A human gives an arbitrary grasp pose. Top right: The
robot estimates the uncertainty through interaction with the ground.
Bottom left: Placing succeeded by proper estimation. Bottom right:
Three dishes are successfully placed in a row.

placing is carried out by following the pre-planned trajectory.
If the grasp pose is not estimated correctly, the placement will
fail with a stuck or jamming. Our framework is successfully
applied to enable successful performance of dish placement
tasks - see Fig. 12 for experiment snapshots. See also our
supplementary materials for video and more details.

VIII. DISCUSSIONS AND CONCLUSION

In this paper, we propose a novel uncertain pose estimation
framework for interactive robot tasks. Essentially, we frame the
problem as bi-level optimization and devise a way to solve it
based on gradient. Prescribed support function based geometry
definition is first presented to make it possible to express dif-
ferentiable contact features. The definition also comes with an
effective solver algorithm and has useful theoretical properties.
Then by using the predefined number of contacts and differ-
entiating low-level problems, the original problem is finally
transformed into a non-linear least squares problem, which
can be solved efficiently using conventional gradient-based
methods. Several scenarios are implemented and demonstrate
how well our method can outperform currently used sampling-
based approaches.

There exists several possible directions for future works.
First, our method is mainly to utilize FT or joint torque sensor
information, so combination with more diverse sensors will
be useful. Specifically, embedding the differentiable nonlinear
least square derived in our work to general factor graph
optimization form will be an important task. It would also
be meaningful to develop a way to handle situations that
uncertainty exists in geometry parameters as well as poses. In
a similar vein, specific methodologies for extracting prescribed
support function from visual information will be an important
topic. Finally, since our method essentially consists of model-
based optimization, it will be interesting to combine it with
learning-based methods by modeling it as a single layer [4].
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APPENDIX

A. Additional visualizations

Fig. 13 shows additional visualizations of equations pre-
sented in the main contents.

B. On the uniqueness of the solution of (10)

There are two possible solutions for (10), one with a positive
σ and one with a negative σ. In order to ensure appropriate
collision detection, the constraint σ > 0 is necessary. To
impose σ > 0, a few simple but additional steps are required in
the Newton step, but we find that those are not really necessary
under proper initialization of σ (in our cases, via IE process).
Thus, we take an unconstrained approach to the problem.

C. Derivation of ds̄
dx

We will derive ds
dx , as ds̄

dx is straighforwardly obtained from
it. To simplify notation, let us define âk = [ak1 , · · · , akn]T with
ai = (vTi x)

+ and ãp =
∑

âp. Then we have

s(x) = V (ãp)
1
p−1âp−1

ds

dx
= (p− 1)V

(
(ãp)

1
p−1diag (âp−2)− (ãp)

1
p−2âp−1â

T
p−1

)
︸ ︷︷ ︸

A

V T

where diag(·) denotes the diagonal matrix from a given vector.
Note that the actual computation flow computes the 3 × 3
matrix after computing the 3 × 1 vector V âp−1, so the
complexity is O(n).

D. Proof of Lemma 1

Let us first prove the positive semi-definite property. It is
sufficient to show the positive semi-definite property of A.
Consider a n-dimensional vector u = [u1, · · · , un]

T . Then

uTAu = ãpu
T diag (âp−2)u− (uT âp−1)

2

holds. As Cauchy-Schwarz inequality indicates

(ap1 + · · ·+ apn)(a
p−2
1 u2

1 + · · ·+ ap−2
n u2

n)

≥ (ap−1
1 u1 + · · ·+ ap−1

n un)
2

it can be confirmed that uTAu ≥ 0, which means A is positive
semi-definite. Now let us show the rank property. It is well
known that Au = 0 holds if and only if uTAu = 0, if A
is a positive semi-definite matrix. Then as u = V Tx holds
the equality condition of Cauchy-Schwarz inequality, rank of
ds
dx is lower than 2. Now suppose that there exists x′ such that
u′ = V Tx′ meets the equality condition. From the assumption,
at least three components of â1 are non-zero. Without loss of
generality, let us consider a1, a2, a3 are non-zero. Then V T

nzx
and V T

nzx
′ must be parallel, with Vnz = [v1, v2, v3]. Finally,

as Vnz is full rank from the assumption, x′ is parallel to x,
and we conclude that the rank of ds

dx is always 2.

(a) Visualization of (6) (b) Visualization of (9)

Fig. 13: Visualizations of equations. Left: Support function and point
for a vertex set in (6). Right: Support point for SE(3) transformation
of body in (9).

Fig. 14: Illustrations for the degeneration test in Sec. V-E. Witness
points (block dots) are recorded as the rotation angle θ changes. Left:
our support function based modeling. Right: Superquadrics.

E. Details on Degeneration Test in Sec. V-E

Illustrations for the degeneration test conducted in Sec. V-E
is visualized in Fig. 14. Each rectangle shape is represented
by 4 vertices in our geometry model. Superquadric model can
be written as following equation:(

x

α1

)p

+

(
y

α2

)p

= 1

where p ∈ R+ is the smoothing parameter similarly to in (7),
and α1, α2 ∈ R are the size parameters.

F. Invertibility of (22)

Jacobian and Hessian of ck can be written as

dc∗k
dfk

=

[
− 2ft1

(f2
t1

+f2
t2

+ϵ)
1
2

− 2ft2

(f2
t1

+f2
t2

+ϵ)
1
2

µ
]

d2c∗k
df2

k

= − 2

(f2
t1 + f2

t2 + ϵ)
3
2

 f2
t2 ft1ft2 0

ft1ft2 f2
t1 0

0 0 0


We can find that Jacobian is always rank 1, as fk cannot be 0 to
satisfy ck ≥ 0. Also, Hessian is always negative semi-definite.
We also know that λk ≥ 0, so DΛ is negative semi-definite.
Thus, if H is positive definite and λk > 0, then H − DΛ is
also positive definite and invertible. Finally, Theorem 2.1 in
[7] concludes the invertibility of the problem.

G. Geometries for Collision Detection Test

Fig. 15 shows the objects utilized in the collision detection
test conducted in Sec. VII-A.



(a) Apple (b) Mustard (c) Sponge

Fig. 15: Images of the objects used in the collision detection bench-
mark

(a) Scenario1 (Left: after first touch, Right: after second touch)

(b) Scenario2 (Left: after first touch, Right: after second touch)

Fig. 16: Images of the objects used in the collision detection bench-
mark

H. Additional details and results for peg-in-hole task

1) Cost landscape: To assess validity of the optimization-
based formulation and the impact of multiple interactions, we
visualize the cost landscape. For more intuitive interpretation,
we assume that the uncertainty exists in the x and y positions
of the hole, while the grasped peg pose are known (therefore,
ξ ∈ R2). Also here, rectangular peg is employed.

Fig. 16 illustrates the cost landscape obtained from our
differentiable framework for the problem. See also Fig. 1 for
the optimization path on the landscape. As depicted, the so-
lution initially obscured with multiple minima, becomes more
apparent as interaction is added. This observation highlights
the potential of our method in generating interesting results
when integrated with active sensing. It suggests that incor-
porating additional interactions can enhance the identification
and clarity of the optimal solution.

2) Grasp parameterization: Fig. 17 provides a visualization
of how grasping is modeled. In the scenarios described in
Sec. VII-C, the pose of the grasped peg can be effectively
represented with just 3 parameters, offering intuitive under-

Fig. 17: Parameterization of grasp pose for a rectangular peg. The
parameterization is also similarly defined for a hexagonal peg.

Fig. 18: Snapshots of simulation results of star-shaped peg-in-hole
manipulation using our uncertain pose estimation framework in
online. Different colors are used to represent convex-decomposed
shapes.

standing. However, for more intricate shapes of pegs and
grippers, 6 parameters can be employed, while incorporating
non-penetration constraints. Exploring scenarios that encom-
pass these complexities would present an intriguing avenue for
future research.

3) Star-shaped geometry: To test our approach on more
complex geometries, we implement a star-shaped peg-in-
hole scenario. In this setup, both the peg and the hole are
decomposed into five convex geometries, and a total of 25
collisions are pre-defined. We validate the effectiveness of our
method in successfully identifying and executing tasks in this
scenario, as demonstrated in Fig. 18 and the supplementary
video.


	Introduction
	Related Works
	Differentiable Contact Formulation
	Uncertainty Handling in Interaction

	Preliminary
	Support Function
	Contact Features
	Implicit Function Theorem

	Problem Formulation
	Differentiable Contact Features via Prescribed Support Function
	Prescribing Support Function
	Support Point and SE(3) Transformation
	Contact Feature Computation
	Nonlinear equation
	Newton solver
	Initialization

	Feature Differentiation
	Analysis on Degeneration

	Bi-level Optimization Solver
	Predefined Number of Contact
	Differentiable Low-level Optimization
	Smoothing and solving
	Differentiation

	High-level Optimization Solver
	Augmentation
	Prior
	Bound constraint
	Motion model


	Results and Evaluations
	Collision Detection
	External Contact Localization
	Peg-in-Hole
	Augmentation: Blind Object Tracking
	Real World Experiment: Dish Placing

	Discussions and Conclusion
	Appendix
	Additional visualizations
	On the uniqueness of the solution of (10)
	Derivation of ddx
	Proof of Lemma 1
	Details on Degeneration Test in Sec. V-E
	Invertibility of (22)
	Geometries for Collision Detection Test
	Additional details and results for peg-in-hole task
	Cost landscape
	Grasp parameterization
	Star-shaped geometry



