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Abstract—We consider a Curvature-constrained Shortest Path
(CSP) problem on a 2D plane for a robot with minimum turning
radius constraints in the presence of obstacles. We introduce
a new bounding technique called Gate* (G*) that provides
optimality guarantees to the CSP. Our approach relies on relaxing
the obstacle avoidance constraints but allows a path to travel
through some restricted sets of configurations called gates which
are informed by the obstacles. We also let the path to be
discontinuous when it reaches a gate. This approach allows us to
pose the bounding problem as a least-cost problem in a graph
where the cost of traveling an edge requires us to solve a new
motion planning problem called the Dubins gate problem. In
addition to the theoretical results, our numerical tests show that
G* can significantly improve the lower bounds with respect to the
baseline approaches, and by more than 60% in some instances.

I. INTRODUCTION

Finding a collision-free path for a robot in the midst of
obstacles is a fundamental problem in Robotics [1]–[3]. In
this paper, we consider a Curvature-constrained Shortest Path
(CSP) problem on a 2D plane for a robot with minimum
turning radius constraints. Specifically, given an initial and a
final configuration1, the minimum turning radius (ρ > 0) of the
robot and a set of obstacles in the 2D plane, the objective is to
find a shortest, collision-free path from the initial to the final
configuration such that the radius of curvature at any point on
the path is at least equal to ρ (refer to Fig. 1). This is a central
problem that arises in applications for mobile robots controlled
by steering mechanisms or for fixed-wing aerial robots with
turn-rate constraints. There has been considerable work on
the CSP and related problems under the general area of non-
holonomic motion planning in the Robotics literature [4]–[13].
Our focus in this paper is on the optimality guarantees for the
CSP.

In the absence of obstacles, the CSP problem reduces to
the classic shortest path problem considered by L.E. Dubins
in [14]. Dubins showed that the shortest path between two
configurations on a 2D plane belongs to a family of 6 paths
where each path is a concatenation of at most 3 pieces, each
of which is a straight line or a circular arc [14]. This shortest
path problem can also be formulated as an optimal control
problem and solved using Pontryagin’s minimum principle, as
shown in [7].

1A configuration is defined by a location and orientation (or heading angle)
of the robot on a 2D plane.
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Fig. 1: Illustration of a CSP for an instance with two obstacles.

In the presence of obstacles, it is much harder to compute a
CSP. In [10], Forture and Wilfong develop an exact algorithm
that can decide if the shortest path exists (but do not find such
a path) when the obstacles are polygons. Reif and Wang [11]
show that finding a CSP is NP-hard when the obstacles are
polygons with a total of k vertices and the vertex positions
are specified within O(k2) bits. Apart from the special case
addressed in [9] for disjoint, convex obstacles with boundaries
consisting of line segments or circular arcs of unit radius, we
are not aware of any exact algorithms for finding a CSP. Since
finding the optimum is difficult, there are two ways of gen-
erating optimality guarantees (a-priori and a-posteriori) for
the CSP. A-priori guarantees obtained through approximation
algorithms provide theoretical upper bounds on the length of
the paths found by the algorithms with respect to the optimum
in polynomial time; they are theoretical worst-case bounds,
generally true for any instance of the problem. Given length
l, and a factor ϵ > 0, an approximation algorithm is presented
in [12] which either outputs that no feasible path with length
at most equal to l exists or finds such a path whose length
is at most (1 + ϵ) times the optimum. This algorithm runs in
time polynomially bounded in n (the total number of obstacle
vertices and edges), m (the bit precision of the input), 1

ϵ , and l.
More approximation results are presented in [13] for a scenario
with moderate2 obstacles. Robust variants of the CSP with
polygonal obstacles [15], [16], and CSPs inside a polygon [17]
have also been addressed. While all the existing approximation

2An obstacle is defined as moderate if it is convex and its boundary is a
differential curve whose radius of curvature is everywhere at least equal to 1.



algorithms for a CSP in the presence of polygonal or moderate
obstacles provide theoretical guarantees, to the best of our
knowledge, we are not aware of any implementations of these
algorithms on any test instance.

Given a problem instance, there are also other ways
(sampling-based methods [18]–[20], heuristics [21], [22]) for
obtaining feasible solutions to the CSP problem. We are then
interested in addressing the following question in this paper:
Given a feasible solution to the CSP problem, how do we
know how good the solution is? The only way to answer this
question is to compare the length of the feasible solution to
the optimum. Since we do not know how to find the optimum,
we develop algorithms that can find tight lower bounds or
underestimates to the optimum, which then provide us with a-
posteriori3 guarantees. With respect to the lower bounds, there
are two of them that are readily available for the CSP. The first
lower bound can be obtained by finding a CSP ignoring the
obstacles (referred to as the Dubins lower bound), and the
second lower bound can be obtained by finding a shortest,
Euclidean path in the presence of obstacles while ignoring
the curvature constraints (referred to as the Euclidean lower
bound). Other than these two lower bounds, we are not aware
of any other lower bound for the CSP problem available in the
literature. While these two lower bounds are relatively easy to
compute, they may not be tight. For example, in Fig. 2, we
show a comparison between these lower bounds and the length
of the feasible paths obtained by some of the best sampling-
based methods for 30 instances. On average, the deviation
of the feasible solutions from these lower bounds is ≈60%,
and it gets as worse as ≈80% for some instances. Our main
objective in this paper is to improve on these lower bounds (or
a-posteriori guarantees) and, as a result, provide more accurate
estimates of the quality of the feasible solutions for the CSP.

Fig. 2: Comparison between the upper bound (length of the
best feasible solution) generated by sampling-based methods
(RRT*, BIT*, FMT*) and the two lower bounds for 30
instances. Instances consist of 10-20 obstacles in a 16x9 map.
Also, ρ is set to 3.

To obtain lower bounds, we can relax some constraints in
the CSP. The choice of which constraint to relax is critical

3Measures the deviation of a feasible solution from a lower bound.
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Fig. 3: Illustration of Gates.
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Fig. 4: Graph construction using gates.

because otherwise, we may end up with either poor lower
bounds or relaxations that remain challenging to solve. In this
paper, we relax the obstacle avoidance constraints but allow
a path to travel through some restricted sets of configurations
called gates which are informed by the obstacles. We also
allow for the paths to be discontinuous when it enters a gate.
Similar ideas on relaxing the continuity of the paths have
been successfully applied to the Dubins Traveling Salesman
Problem and its extensions in [23], [24] to obtain optimality
guarantees. To illustrate our ideas, for any line segment XY ,
consider ĜXY := {(x, y, θ) : (x, y) ∈ XY , θ ∈ [−π2 ,+

π
2 ]}, a

set of configurations referred to as a gate associated with line
segment XY . For an example scenario shown in Fig. 3, it is
clear that any feasible path (if it exists) must first pass through
ĜAB or ĜCD, and then through either ĜEF or ĜGH .

Allowing a path to be discontinuous when it traverses
through a gate enables us to pose the lower bounding problem
as a shortest path problem in the following way: The gates
and the initial/final configurations are represented as vertices
in a newly constructed directed and acyclic graph G as shown
in Fig. 4. The minimum length of the curvature-constrained
shortest path between any two adjacent gates or vertices is
obtained by formulating and solving a new motion planning
problem called the Dubins Gate problem. This length is set
as the cost of the corresponding edge in G. Once we compute
the costs of all the edges in the graph, we solve for a least-
cost path from the initial to the final configuration in G, the
cost of which is a lower bound to the CSP. The procedure
for adding gates to G is accomplished through an iterative
process. Each iteration of our approach adds a new set of
gates, and the updated lower bounding solution (least-cost



Fig. 5: Obstacle Map.

path) further informs us on the choice of the gates to add
in the next iteration. This iterative procedure terminates when
we reach the computational time limit or when we cannot
add any more gates (based on the parameters we specify). We
refer to our approach as Gate* (G*). We also present extensive
numerical tests to show that G* can significantly improve the
lower bounds with respect to the baseline approaches, and by
more than 60% in some instances.

II. PROBLEM STATEMENT

The configuration of the robot at time t is represented
as (x(t), y(t), θ(t)) where (x(t), y(t)) denotes the position
and θ(t) denotes the heading angle of the robot at time t.
Without loss of generality, we assume both the initial and final
configurations of the robot lie on the x−axis. That is, we let
cs := (0, 0, θs) denote the initial configuration of the robot at
time t = 0. The final (desired) configuration of the robot is
denoted by cf := (xf , 0, θf ). Also, without loss of generality,
we assume the robot travels at unit speed; therefore, the time
elapsed is the same as the distance traversed along the path.
Let Ω denote a set of obstacles in a 2D plane. We assume
each obstacle is a either a convex polygon4 or a disc but they
can intersect allowing for non-convex regions where obstacles
are present (Fig. 5). Any path between cs and cf is feasible if
it does not intersect with the interior of any obstacle and the
radius of curvature at any point on the path is at least equal
to ρ. The objective of the CSP is to find a shortest, feasible
path from cs to cf .

III. PRELIMINARIES AND NOTATIONS

A gate consists of a set of all the configurations (x, y, θ)
such that (x, y) lies on a line segment and θ is any angle in
a given sector of angles. Specifically, if the line segment con-
necting two points A and B is denoted as AB and the sector of
angles is denoted as [θmin, θmax], then the corresponding gate

4The approach presented in this paper is generic and can be extended to
other shapes.
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Fig. 6: Illustration of the gate GAB(θmin, θmax) correspond-
ing to line segment AB. As usual, angles are measured in the
counter-clockwise direction with respect to the x−axis.
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Fig. 7: An example of a feasible path for the Dubins Gate
Problem (DGP). Note that the departure and the arrival con-
figurations of Dubins path (in blue color) must satisfy the
heading angle constraints.

GAB(θmin, θmax) is defined as {(x, y, θ) : (x, y) ∈ AB, θ ∈
[θmin, θmax]}. Refer to Fig. 6 for an illustration.

The initial and the final configurations of the robot can be
also viewed as special cases of gates where the line segments
and the sectors reduce to points and angles respectively. To
simplify the presentation, we interchangeably refer to any
vertex in the graph G as a gate, and vice-versa. While there
are several ways of choosing and adding gates to G, in
this paper, we only add gates corresponding to vertical line
segments. Also, we only add a gate if the x−coordinate of
any configuration in the gate lies strictly between 0 and xf
(the initial and final x−coordinates of the robot)5. This allows
us to generate a simpler graph (directed and acyclic) like
the one shown in Fig. 4. Other possibilities for generating
gates will be considered in future work. Since we only add

5This gate construction procedure in G* doesn’t impose any restriction on
the location of the obstacles; certainly, obstacles can lie anywhere. We used
this approach to make the graph construction in G* simpler. Ideally, we would
like to allow for all the gates, and also have back edges going from gates with
larger x coordinates to gates with smaller x coordinates. If we add all the
gates and allow back edges, we certainly expect the bounds to get better.



gates corresponding to vertical line segments, the gates in
G can be partitioned into disjoint subsets Vi, i = 1 · · · , l
(l ≥ 2) such that the x-coordinate of any configuration in
any gate of Vi is the same (lets call this x-coordinate as
x̄(Vi)), and x̄(V1) < x̄(V2) ≤ x̄(V3) · · · ≤ x̄(Vl−1) < x̄(Vl).
By our gate construction process, note that V1 = {cs} and
Vl = {cf}. For example, in Fig. 4, the six gates (or vertices)
of G can be partitioned into V1 = {cs}, V2 = {ĜAB , ĜCD},
V3 = {ĜEF , ĜGH}, V4 = {cf}.

Given two gates GAB(θ
l
1, θ

u
1 ) and GCD(θ

l
2, θ

u
2 ), the Dubins

Gate Problem (DGP) aims to find the shortest curvature
constrained path from a configuration in GAB(θ

l
1, θ

u
1 ) to a

configuration in GCD(θ
l
2, θ

u
2 ). This problem is new and has

not been addressed in the literature. However, in the special
case when the line segments AB, CD reduce to points, the
DGP simplifies to the Dubins Interval Problem (DIP) which
has been solved in the literature [25]. Even though the gates
generated in this paper correspond to vertical line segments,
we make no such assumptions while solving the DGP (Fig.
7).

We will briefly review the main result for the Dubins interval
problem as it will be used to solve DGP. Suppose L and R
represent the left (counter-clockwise) and the right (clockwise)
circular arcs with radius equal to ρ, and let S represent a
straight line segment. Also, let Lψ or Rψ denote left or right
circular arcs with an arc angle equal to ψ. A three segment
path for the Dubins interval problem, say LSR(θ1, θ2), follows
the sequence L, S and R, and starts with heading equal to
θ1 ∈ [θl1, θ

u
1 ] and ends with heading equal to θ2 ∈ [θl2, θ

u
2 ].

Other three segment paths can be defined similarly. For two
segment paths, the initial or the final heading angle is specified
while the other heading is derived based on the path type.
For example, LS(θu1 , θ2(θ

u
1 )) denotes a LS path that starts at

heading equal to θu1 and ends at a heading equal to θ2(θ
u
1 )

which is a function of θu1 . The initial and final headings for
single segment paths can be specified directly based on the
path type. The main result in [25] states that the shortest path
for the Dubins interval problem must be one of the following
candidate paths6 or a degenerate form of these:

• Paths with three segments: LSR(θu1 , θ
u
2 ), LSL(θ

u
1 , θ

l
2),

LRL(θu1 , θ
l
2), RSL(θl1, θ

l
2), RSR(θl1, θ

u
2 ) and

RLR(θl1, θ
u
2 ).

• Paths with two segments: LS(θu1 , θ2(θ
u
1 )),

RS(θl1, θ2(θ
u
1 )), SL(θ1(θ

l
2), θ

l
2), SR(θ1(θ

u
2 ), θ

u
2 ),

LR(θu1 , θ2(θ
u
1 )), LR(θ1(θ

u
2 ), θ

u
2 ), RL(θl1, θ2(θ

u
1 )) and

RL(θ1(θ
l
2), θ

l
2).

• Paths with one segment: S, Lψ and Rψ , where ψ > π.

IV. G* ALGORITHM

The overall pseudo-code of G* is given in Algorithm 1. G*
first initializes G with just two vertices cs (initial configuration)
and cf (final configuration) and an edge between them (line
14 of Alg. 1). The cost of traveling the edge (cs, cf ) is set

6Note that some of these paths may not be feasible (may not satisfy the
heading angle constraints) and, therefore, can be ignored.

Algorithm 1: G*

1 Inputs:
2 Ω // Set of obstacles
3 size(obs) ∀ obs ∈ Ω // sizes of obstacles
4 cs, cf // Initial, final configurations
5 τi // Obstacle intersection tolerance
6 τp // Position continuity tolerance
7 τθ // Angle continuity tolerance
8 Tm // Computational time limit
9 Output:

10 llb // Lower bound for CSP
11 pathlb // Lower bounding path
12 Initialization:
13 TimeElapsed← 0 // Running time G*
14 V ← {cs, cf}, E ← {(cs, cf )} G ← (V,E)
15 cost(cs, cf )← Dubins path length between cs and cf
16 path∗ ← (cs, cf )
17 pathlb ← Dubins path between cs and cf
18 Main Loop:
19 while pathlb is infeasible & TimeElapsed ≤ Tm do
20 for obs ∈ Ω do
21 if pathlb intersects obs then
22 lc ← chord length of the intersection of

pathlb with obs
23 r ← lc

size(obs)

24 if r > τi & 0 ≤ xc ≤ xf then
25 Add new gates to G as in Fig. 8(c)
26 Update the set of edges in G
27 end
28 end
29 end
30 Sdc ← Set of all the discontinuities in pathlb
31 if |Sdc|≥ 1 then
32 for C̄ ∈ Sdc do

// Let C̄ := {(xa, ya, θa), (xd, yd, θd)}
33 if |ya − yd|≥ τp or |θa − θd|≥ τθ then
34 Delete and add new gates to G as

shown in Fig. 9(b) and Fig. 9(c)
35 Update the set of edges in G
36 end

// If both |ya − yd|≥ τp and
|θa − θd|≥ τθ are true, we
first add new gates as in
Fig. 9(b) and then, add
more sectors to each new
gate as in Fig. 9(c)

37 end
38 end
39 for any new edge (u, v) added in G do
40 cost(u, v)← optimal Dubins path length from

gate u to gate v (solve corresponding DGP).
41 end
42 path∗ ← a least-cost path in G
43 pathlb ← The Dubins lower bounding path

corresponding to path∗
44 end
45 lG∗ ← sum of the edge costs in path∗

46 return lG∗, pathlb
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Fig. 8: (a) There are two obstacles, obs1 and obs2 in this illustration. pathlb is intersecting obs1 at points A and B. (b) The
line segment that joins A and B is referred to as a chord. Here, the parameter r is a measure of the extent to which pathlb
intersects the obstacle obs1. Here, the size of a polygonal obstacle is defined as the length of the longest edge of the obstacle.
New gates are added by intersecting the vertical line segment passing through the center (xc) of the chord with the free space.
Each line segment in {CD, EF , GH} is initially associated with three sectors [0, 2π3 ], [ 2π3 ,
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3 ] and [ 4π3 , 2π]. Therefore, there

are three new gates created corresponding to each line segment in {CD, EF , GH}.
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Fig. 9: (a) There are three gates associated with line segment EF , i.e, GEF (0,
2π
3 ), GEF (

2π
3 ,

4π
3 ), and GEF (

4π
3 , 2π). A

lower bounding path, pathlb, is reaching gate GEF (
4π
3 , 2π) at (xa, ya, θa) and departing GEF (

4π
3 , 2π) at (xd, yd, θd). The

discontinuity in position here is ∆y := ya−yd and the discontinuity in heading angle is ∆θ := |θa− θd|. (b) If ∆y > τp, then
partition line segment EF into two equal segments EG and GF . Delete the gates corresponding to EF and add three new
gates corresponding to each line segment in {EG,GF}. (c) Similarly, if ∆θ > τθ, then partition the existing sector [2π/3, 2π]
into [2π/3, θn] and [θn, 2π] as shown in the figure. Also, delete the gate corresponding to [2π/3, 2π] and add the new gates.



to the length of the shortest Dubins path from cs to cf (line
15 of Alg. 1). The cost of any path in G is defined as the
sum of the cost of the edges in the path. A least-cost path
from cs to cf found in G is denoted as path∗, and is updated
during each iteration of the algorithm. Note that path∗ is a
sequence of vertices in G, and an edge joining any two adjacent
vertices in path∗ corresponds to a Dubins path. Therefore, we
keep track of path∗ as well as its corresponding collection
of Dubins paths in pathlb (lines 16-17 of Alg. 1). pathlb
may not be feasible when it crosses a gate; i.e., the arrival
configuration (xa, ya, θa) of the path at a gate may not be
equal to the departure configuration (xd, yd, θd) at the gate
(Fig. 9(a)). A discontinuity in a path is then defined as a tuple
with its unequal arrival and departure configurations. We will
later show that pathlb found at the end of any iteration of G*
is a lower bounding solution to the CSP. If pathlb turns out to
be feasible (i.e,, it does not intersect the interior of any of the
obstacles and does not contain any discontinuities), it must be
an optimal solution to the CSP. However, this is generally not
the case.

In each iteration of G*, if pathlb is infeasible and the run
time of G* has not exceeded the limit (Tm), we add new gates
to G and update it based on the type of infeasibility in pathlb
as follows:

• Infeasibility type: pathlb passes through the interior
of an obstacle (lines 20-29 of Alg. 1): Refer to Fig. 8.
We add new gates (as vertices) to G based on a measure
(r) that specifies the extent to which pathlb intersects
an obstacle. Refer to Fig. 8(b) on how we compute
this measure. If this measure exceeds the given obstacle
intersection tolerance (τi) and the center of the chord (xc)
strictly lies between 0 and xf , we add a fixed number of
gates7 to G for each line segment as shown in Fig. 8(c).
Updating G: Consider the partition of V into subsets
V1, V2, · · · , Vl (as described in section III) such that
x̄(V1) < x̄(V2) ≤ x̄(V3) · · · ≤ x̄(Vl−1) < x̄(Vl). Let Vk
for some k ∈ {2, · · · , l− 1} be the set of new gates that
has been added. To update the edges in G, we (1) delete
all the edges from any gate in Vk−1 to any gate in Vk+1,
(2) add edges from each gate in Vk−1 to all the gates
in Vk and (3) add edges from each gate in Vk to all the
gates in Vk+1.

• Infeasibility type: pathlb has a path discontinuity in
position (lines 30-38 of Alg. 1): Refer to Fig. 9(b). If
the Euclidean distance between the arriving and departing
configurations at a discontinuity is more than a given
position continuity tolerance (say τp), we partition line
segment EF into two equal segments EG and GF , and
add new gates corresponding to each line segment in
{EG,GF}. We note here that the new gates will inherit
the same level of angle discretizations as the gates cor-
responding to EF . For example, the gates corresponding
to EF is associated with three sectors [0, 2π3 ], [ 2π3 ,

4π
3 ]

7In this paper, we initialize each line segment with three sectors.

and [ 4π3 , 2π]; the same sectors will also be inherited by
all the new gates.
Updating G: Similar to the previous infeasibility type,
consider the partition of V into subsets V1, V2, · · · , Vl
as defined before. Let the new gates be added to Vk for
some k ∈ {2, · · · , l − 1}. To update the edges in G, (1)
add edges from each gate in Vk−1 to all the new gates
in Vk and (2) add edges from each new gate in Vk to all
the gates in Vk+1.

• Infeasibility type: pathlb has a path discontinuity in
heading (lines 30-38 of Alg. 1): Refer to Fig. 9(c). If
the difference between the arrival and departure headings
is more than a given angle continuity tolerance (say τθ),
we partition the gates associated with line segment EF
as shown in Fig. 9(c).
Updating G: This step follows the same procedure as
presented for the path discontinuity in position.

The cost of each new edge added can be obtained by solving
the DGP (lines 39-41 of Alg. 1). At the end of each iteration
of G*, a least-cost path (path∗) is computed in G using
Dijkstra’s shortest path algorithm [26] (line 42 of Alg. 1), and
the iterations continue until the termination criteria are met.

A. Lower Bounding Proof

If we can solve the DGP to optimality (presented in the
next section), the following theorem shows that sum of the
edge costs in path∗ is a lower bound to the CSP problem.

Theorem 1. Consider a CSP problem instance with a feasible
solution. Let path∗ be a least-cost path in G at the end of any
iteration of G* applied to the instance. Let lG∗ denote the sum
of the edge costs in path∗. Let lopt denote the optimal length
of the CSP. Then, lG∗ ≤ lopt.

Proof: Consider the set of all the gates V in G. Partition
the gates into subsets V1, V2, · · · , Vl (as described in section
III) such that x̄(V1) ≤ x̄(V2) · · · ≤ x̄(Vl). No continuous path
from cs can reach cf without passing through at least one of
the gates in Vi,∀i = 1, · · · , l. This implies that any optimal
path for the CSP problem must also pass through at least one
of the gates in Vi,∀i = 1, · · · , l. Let a sequence of gates visited
by an optimal path be (g1, g2, · · · , gl) where gi ∈ Vi, i =
1, · · · , l. Since, for i = 1, · · · , l, cost(gi, gi+1) denotes the
length of the shortest Dubins path from any configuration in
gi to any configuration in gi+1, we get

∑l−1
i=1 cost(gi, gi+1) ≤

lopt. Note that (g1, g2, · · · , gl) is a feasible path in G. There-
fore, we also have lG∗ ≤

∑l−1
i=1 cost(gi, gi+1). Putting these

results together, we conclude that lG∗ ≤ lopt.

V. SOLVING THE DUBINS GATE PROBLEM

We use the same notations as the DGP stated in section III.
Any position p1 on line segment AB is represented as p1 =
A+λ1v1 where λ1 ∈ [0, 1] and v1 := B−A, a vector directed
from A to B. Similarly, any position p2 on line segment CD
is represented as p2 = C + λ2v2 where λ2 ∈ [0, 1] and v2 :=
D − C.



TABLE I: List of candidate paths for the DGP

Path Mode Candidate Paths
LSL LSL(λe

1, θ
u
1 , λ

e
2, θ

l
2), LSL(λ

e
1, θ

u
1 , λ

∗
2, θ

l
2), LSL(λ

∗
1, θ

u
1 , λ

e
2, θ

l
2), for λe

1, λ
e
2 ∈ {0, 1}

LSR LSR(λe
1, θ

u
1 , λ

e
2, θ

u
2 ), LSR(λe

1, θ
u
1 , λ

∗
2, θ

u
2 ), LSR(λ∗

1, θ
u
1 , λ

e
2, θ

u
2 ), for λe

1, λ
e
2 ∈ {0, 1}

RSL RSL(λe
1, θ

l
1, λ

e
2, θ

l
2), RSL(λe

1, θ
l
1, λ

∗
2, θ

l
2), RSL(λ∗

1, θ
l
1, λ

e
2, θ

l
2), for λe

1, λ
e
2 ∈ {0, 1}

RSR RSR(λe
1, θ

l
1, λ

e
2, θ

u
2 ), RSR(λe

1, θ
l
1, λ

∗
2, θ

u
2 ), RSR(λ∗

1, θ
l
1, λ

e
2, θ

u
2 ), for λe

1, λ
e
2 ∈ {0, 1}

LRL LRL(λe
1, θ

u
1 , λ

e
2, θ
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Let P = {LSL,RSR,RSL,LSR,LRL,RLR,LS,RS,
SL, SR,LR,RL,L,R, S} denote the set of all the Dubins
path modes possible between two configurations. We denote
the length of the path of a given Dubins type P ∈ P be-
tween an initial configuration, defined by (λ1, θ1), and a final
configuration, defined by (λ2, θ2), as lP(λ1, θ1, λ2, θ2). Let
lD(λ1, θ1, λ2, θ2) := minP∈P lP(λ1, θ1, λ2, θ2). The Dubins
Gate Problem (DGP) can be re-stated as follows:

min
λ1,λ2,θ1,θ2

lD(λ1, θ1, λ2, θ2),

subject to λ1, λ2 ∈ [0, 1], θ1 ∈ [θl1, θ
u
1 ], θ2 ∈ [θl2, θ

u
2 ].

For a given λ1 and λ2, the DGP reduces to the Dubins
Interval Problem (DIP), the solution of which must be one of
the candidate paths presented in Section III. To solve DGP,
we consider each candidate path for DIP and optimize over
λ1 ∈ [0, 1] and λ2 ∈ [0, 1]. We will now present the main
results for each of these candidate paths; the proofs of all
the Lemmas are in the appendix.

A. Three segment paths

Broadly all the three segment paths can be categorized as
either a CSC or a CCC path where C stands for the circular
arc turning left (L) or right (R).

1) CSC Path: Let λ∗1 correspond to p∗1 ∈ AB such that
the S segment in the CSC path from (p∗1, θ1) to (p2, θ2)
is perpendicular to AB. The length of such path is de-
noted as lCSC(λ∗1, λ2)

8; if such a path doesn’t exist, we set
lCSC(λ

∗
1, λ2) to ∞. For this category, note that the headings

8For simplicity, lCSC is not explicitly shown as a function of θ1 and θ2.

θ1 and θ2 are given, and therefore, we do not state the length,
lCSC , as a function of the headings also. Similarly, let λ∗2
correspond to p∗2 ∈ CD such that the S segment in the CSC
path from (p1, θ1) to (p∗2, θ2) is perpendicular to CD.

Lemma 1.
minλ1,λ2∈[0,1] lCSC(λ1, λ2) = min{lCSC(λe1, λe2), lCSC
(λ∗1, λ

e
2), lCSC(λ

e
1, λ

∗
2)}, λe1, λe2 ∈ {0, 1}}.

2) CCC Path:

Lemma 2.
minλ1,λ2∈[0,1] lCCC(λ1, λ2) = min{lCCC(λe1, λe2), λe1, λe2 ∈
{0, 1}}.

B. Two Segment Paths

In this section, we analyze the two-segment paths CS, SC,
and CC. For a given p1 (or λ1) and θ1, the final heading of
any two-segment path, θ2, is a function of p2 (or λ2), and
cannot be independently chosen. Similarly, for a given p2 and
θ2, the initial heading θ1 is a function of p1 (or λ1). Let pi
be the inflection point on the two-segment path.

1) CS or CC: We consider the CS or CC paths where θ1
is given and θ2 can lie in the interval [θl2, θ

u
2 ]. For a given

λ1, let λ∗2 represent p∗2 ∈ CD, that corresponds to a final
position of a CS path, such that pip∗2 is perpendicular to CD;
let the length of such CS path be lCS(λ1, λ∗2). Similarly, for
a given λ2, lCS(λ∗1, λ2) is the length of a CS path, where
pip2 is perpendicular to AB. Let lCS(λ∗1, λ

∗
2) be the length

of the CS path where pi, p∗2 is perpendicular to both AB
and CD; such a path exists only when AB and CD are
parallel. Moreover, the length, lCS(λ∗1, λ

∗
2), would be same

as lCS(λ∗1, λ2) or lCS(λ1, λ∗2).



Let λl2 (or λu2 ) correspond to the position pl2 ∈ CD (or pu2 ),
such that the final heading, θ2(λl2) (or θ2(λu2 )), is equal to θl2
(or θu2 ). The definitions for the CC paths are similar to that
of the CS paths.

Lemma 3. For P ∈ {CS,CC}, minλ1,λ2∈[0,1] lP(λ1, λ2) =
min{lP(λe1, λe2), lP(λ∗1, λe2), lP(λe1, λ∗2), lP(λe1, λl2),
lP(λ

e
1, λ

u
2 ), λ

e
1, λ

e
2 ∈ {0, 1}}.

2) SC or CC: We consider the SC paths where θ2 is given
and θ1 can lie in the interval [θl1, θ

u
1 ]. The definition of the

critical and boundary points is similar to that of the CS paths
with few differences. For a given λ2, lSC(λ∗1, λ2) is the length
of a SC path, where p1pi is perpendicular to AB. For a given
λ1, lSC(λ1, λ∗2) is the length of a SC path, where p1pi is
perpendicular to CD.

Let λl1 (or λu1 ) correspond to the position pl1 ∈ AB (or pu1 ),
such that the initial heading, θ1(λl1) (or θ1(λu1 )), is equal to
θl1 (or θu1 ). The definitions for the CC paths are similar to that
of the SC paths.

Lemma 4. For P ∈ {SC,CC}, minλ1,λ2∈[0,1] lP(λ1, λ2) =
min{lP(λe1, λe2), lP(λ∗1, λe2), lP(λe1, λ∗2), lP(λl1, λe2),
lP(λ

u
1 , λ

e
2), λ

e
1, λ

e
2 ∈ {0, 1}}.

C. One Segment Paths (C or S)

The one segment turns (L or R) are candidate solutions for
DIP only when the turn angle is greater than π. We consider
such paths here, and minimize over λ1 and λ2. The definitions
of the boundary positions, λli, λ

u
i , i = 1, 2, are similar to the

boundary positions defined for the CS or SC paths.

Lemma 5. For P ∈ {L,R}, minλ1,λ2∈[0,1] lP(λ1, λ2) =
min{lP(λe1, λe2), lP(λe1, λl2), lP(λe1, λu2 ), lP(λl1, λe2),
lP(λ

u
1 , λ

e
2), λ

e
1, λ

e
2 ∈ {0, 1}}.

Consider the paths that have just one straight line segment;
for a given position p1(λ1), let λ∗2 correspond to a position
p2, such that the straight line segment is perpendicular to CD.
For a given λ2, λ∗1 is similarly defined.

Lemma 6.
minλ1,λ2∈[0,1] lS(λ1, λ2) = min{lS(λe1, λe2), lS(λe1, λ∗2),
lS(λ

∗
1, λ

e
2), lS(λ

e
1, λ

l
2), lS(λ

e
1, λ

u
2 ), lS(λ

l
1, λ

e
2), lS(λ

u
1 , λ

e
2),

λe1, λ
e
2 ∈ {0, 1}}.

D. Candidate Paths for the Dubins Gate Problem

The candidate paths for finding the optimum of the Dubins
Gate Problem are listed in the Table I.

VI. NUMERICAL RESULTS

We generated a set of thirty maps, ten each with 10, 15 and
20 obstacles. The obstacles are randomly generated convex
polygons and discs in an area of dimensions 16 × 9 units of
distance. We set the Euclidean distance between the initial and
final configurations to be 16 units. Also, the heading angle at

(a) Turning radius (ρ) = 1

(b) Turning radius (ρ) = 2

Fig. 10: Comparison of the paths generated by the lower and
upper bounding algorithms for an instance with polygonal
obstacles.

the initial and final configurations were chosen9 to be 90◦ for
all the instances except for the ones where the heading angles
are varied.

The upper bounds for the CSP were computed using the
Open Motion Planning Library (OMPL) [27]. A Dubins State
Space was defined, and the feasible solutions were generated
using RRT* [18], BIT* [19], and FMT* [20] algorithms. A
computational time limit of 10 minutes was set for all the
algorithms. We used the best feasible solution generated using
these algorithms and its length is set as the upper bound (lUB)
for the CSP problem. The best trivial lower bound (lLB) was
obtained by choosing the maximum of lengths of the two

9We note here that the initial (or the final) configuration can be set to any
angle. We chose instances with initial and final configurations set to 90◦ as
we found these instances to be harder to solve in our preliminary tests. G*
works for any initial and final configuration, and these configurations do not
have to equal.



TABLE II: Performance of G* with varying ρ

Obstacles Radius
(ρ)

Trivial LB
(lLB)

% Improvement of G* Optimality Gap w.r.t. lLB Optimality Gap w.r.t. lG∗
Avg. Max Avg. Max. Avg. Max.

1 18.456 0.753 8.349 2.947 22.937 1.935 13.402
10 2 19.886 8.846 24.604 18.394 51.439 10.429 51.536

3 22.386 23.264 57.395 46.278 62.287 14.698 65.213
1 18.456 2.660 19.405 8.264 24.890 2.825 7.443

15 2 19.886 18.946 47.558 28.365 56.259 12.890 38.283
3 22.386 38.826 58.297 54.294 69.698 13.457 44.936
1 18.456 8.425 18.917 12.450 28.258 4.583 9.789

20 2 19.886 25.647 51.890 42.896 62.846 14.697 54.670
3 22.386 44.637 58.294 62.485 69.256 16.738 48.286

paths obtained by 1) solving the CSP without the obstacles
(provides the Dubins bound), and 2) solving the CSP ignoring
the turning radius constraints as discussed in the introduction
(provides the Euclidean bound).

G* was implemented in Python 3.6. Similar to the other
algorithms, the computational time limit of G* was also set to
10 minutes. All computations were conducted on a computer
with a 2.80 GHz Intel Core i7-7700HQ processor running
Ubuntu 16.04. An illustration of the paths generated by the
lower bounding algorithms, G*, and the best upper bounding
solution (from RRT*,BIT*, FMT*) using one of the maps
are shown in Fig. 10a and Fig. 10b. Here, the paths were
computed for an instance with ten obstacles and with turning
radius ρ = 1 and ρ = 2.

To evaluate the performance of G*, we vary the minimum
turning radius of the robot (ρ = 1, 2, 3), the three tolerances
(τi = 0.1, 0.2, 0.3, τp = 0.1, 0.2, 0.3, τθ = 15◦, 30◦, 45◦) as
well as the initial and final heading angles of the robots on all
the 30 maps. Finally, we also present the performance of G*
on the instances discussed in the introduction (Fig. 2).

A. Impact of the minimum turning radius (ρ)

For a given number of obstacles and ρ (referred to as
case), we tested the algorithm on 10 maps. Each instance
corresponds to one of the maps, and a value assigned to each
of the tolerances. Since we have three different tolerances
(τi, τp, τθ) and three values for each tolerance, for each case,
the algorithms were tested on a total of 270 instances. For
each case, the average and maximum of the bounds obtained
are presented in Table II. Note that the trivial bound (lLB) for
each case is independent of the tolerances, and therefore there
is only one value. As expected, as ρ increased, the average
% improvement of G* bounds with respect to lLB increased
from 0.75% to 44.63%. A maximum improvement of 58.29%
was observed for instances with 20 obstacles and ρ = 3.
This improvement in the lower bounds has a direct impact
on our understanding of the quality of the feasible solutions;
specifically, in Table II, we can compare the optimality gaps
with respect to (w.r.t.) lLB versus the optimality gaps w.r.t.
lG∗. For example, for maps with 15 obstacles and ρ = 3, the
optimality gap w.r.t. lG∗ improved to 13.45% on an average
as compared to 54.29% w.r.t the lLB .

Fig. 11 presents the reduction in the optimality gap due to
G*. The case denoted as “o10 r1” corresponds to a map with

Fig. 11: Improvement of the optimality gap by the G* bounds.

Fig. 12: A plot comparing the percentage split of instances
(set of 270) based on their G* lower bound improvements.

10 obstacles and ρ = 1. This format of the case name applies
to the other cases as well. The optimality gap with respect to
the trivial lower bound is scaled to 100%, and the reduction in
the gap due to the G* bounds and the remaining gap is shown
in blue and orange respectively. The gap between the lower



TABLE III: Performance of G* with varying τi

Obstacles Intersection
Tolerance

Trivial LB
(lLB)

% Improvement of G* Optimality Gap w.r.t. lLB Optimality Gap w.r.t. lG∗
Avg. Max Avg. Max. Avg. Max.

τi = 0.1 18.296 15.978 54.235 26.468 72.349 9.350 45.274
10 τi = 0.2 18.429 15.893 54.235 27.593 72.349 11.239 45.274

τi = 0.3 18.739 14.847 54.235 28.266 72.349 12.348 45.274
τi = 0.1 18.197 16.115 58.927 28.561 79.766 11.958 48.594

15 τi = 0.2 18.278 15.933 58.927 30.428 79.766 11.395 48.594
τi = 0.3 18.982 14.629 58.927 31.521 79.766 12.349 48.594
τi = 0.1 19.043 13.385 61.589 38.653 78.350 13.395 56.467

20 τi = 0.2 19.303 14.923 61.589 40.589 78.350 12.350 56.467
τi = 0.3 19.184 14.573 61.589 41.842 78.350 14.234 56.467

TABLE IV: Performance of G* with varying τp

Obstacles Position
Tolerance

Trivial LB
(lLB)

% Improvement of G* Optimality Gap w.r.t. lLB Optimality Gap w.r.t. lG∗
Avg. Max Avg. Max. Avg. Max.

τp = 0.1 18.294 14.234 54.235 25.693 72.349 10.395 45.274
10 τp = 0.2 18.429 15.893 54.235 27.593 72.349 11.239 45.274

τp = 0.3 18.829 15.235 54.235 28.962 72.349 12.469 45.274
τp = 0.1 18.694 15.235 58.927 28.498 79.766 10.291 48.594

15 τp = 0.2 18.278 15.933 58.927 30.428 79.766 11.395 48.594
τp = 0.3 19.013 15.823 58.927 30.947 79.766 11.598 48.594
τp = 0.1 19.021 14.014 61.589 39.238 78.350 9.348 56.467

20 τp = 0.2 19.303 14.923 61.589 40.589 78.350 12.350 56.467
τp = 0.3 19.184 14.235 61.589 41.345 78.350 14.985 56.467

TABLE V: Performance of G* with varying τθ

Obstacles Angle
Tolerance

Trivial LB
(lLB)

% Improvement of G* Optimality Gap w.r.t. lLB Optimality Gap w.r.t. lG∗
Avg. Max Avg. Max. Avg. Max.

τθ = 15◦ 18.429 15.893 54.235 27.593 72.349 11.239 45.274
10 τθ = 30◦ 18.429 15.893 54.235 27.593 72.349 11.239 45.274

τθ = 45◦ 18.429 15.893 54.235 27.593 72.349 11.239 45.274
τθ = 15◦ 18.278 15.933 58.927 30.428 79.766 11.395 48.594

15 τθ = 30◦ 18.278 15.933 58.927 30.428 79.766 11.395 48.594
τθ = 45◦ 18.278 15.933 58.927 30.428 79.766 11.395 48.594
τθ = 15◦ 19.303 14.923 61.589 40.589 78.350 12.350 56.467

20 τθ = 30◦ 19.303 14.923 61.589 40.589 78.350 12.350 56.467
τθ = 45◦ 19.303 14.923 61.589 40.589 78.350 12.350 56.467

TABLE VI: Performance of G* with varying initial/final heading angles

Heading (θ) Obstacles Trivial LB
(lLB)

% Improvement of G* Optimality Gap w.r.t. lLB Optimality Gap w.r.t. lG∗
Avg. Max Avg. Max. Avg. Max.

10 16.098 3.124 52.846 18.350 68.348 22.395 41.374
0 15 16.106 3.259 54.388 26.457 68.239 24.587 64.234

20 16.129 3.294 58.982 39.275 76.399 34.584 76.436
10 18.237 15.346 62.439 29.383 74.982 12.439 48.240

π
2

15 18.497 15.683 61.237 32.349 76.498 12.985 43.249
20 18.840 15.824 63.987 39.235 77.386 13.239 58.242
10 28.240 3.835 25.289 8.240 36.486 5.399 6.223

π 15 28.458 3.392 25.399 12.346 37.985 8.499 16.244
20 28.430 3.554 25.987 12.784 38.595 8.350 14.387
10 18.937 24.239 84.235 38.395 88.346 7.346 28.364

3π
2

15 18.958 24.275 84.797 42.345 88.837 9.456 26.236
20 19.064 24.336 84.679 41.785 89.397 9.973 34.235

and the upper bounds is reduced by 45-75% in most cases
(except for the o10 r1 and o15 r1 cases). That is due to the
fact that these cases consists of relatively easier instances, and
the gap with respect to the trivial lower bound itself is quite
low.

Fig. 12 captures the distribution of instances for different
ranges of percent gap reduction. The optimality gap reduction

by G* bounds for most instances of the case o10 r1 were
under 10%. However, for instances with a higher number of
obstacles and larger turning radii, we observe a significantly
higher reduction in the gap.



(a) τp = 0.1(lG∗ = 17.6978) (b) τp = 0.2(lG∗ = 17.6854) (c) τp = 0.3(lG∗ = 17.6289)

Fig. 13: Comparison of position tolerance (τp) on G* bounds on an instance with 10 obstacles for ρ = 1.

Fig. 14: A comparison of different bounds against G* bound for 30 instances. Each instance is generated on a map with
dimensions 16 units × 9 units and has 10 or 15 or 20 obstacles. The minimum turning radius of the vehicle is set to 3 units.

B. Impact of the tolerances

The bounds obtained by varying the obstacle intersection
tolerance (τi), the position continuity tolerance (τp), and the
angle continuity tolerance (τθ) are presented in the Tables
III, IV and V respectively. The values of τi, τp, and τθ are
set to 0.2, 0.2 and 15◦ respectively, whenever that particular
tolerance is not varied. In general, we can observe a trend that
the gap between upper bound and the G* bounds are the lowest
when the tolerances are the lowest. This is expected as G*
bounds tend to get closer to the upper bound as τi, τp, τθ gets
smaller. An illustration of how τp affects the lower bounding
paths found by G* is shown in Fig. 13.

C. Impact of the initial and final heading angles

We set the initial and final heading angle to be equal to
θ, and chose four values (0, π2 , π,

3π
2 ) for θ. Other parameters

were chosen as follows: ρ = 2, τi = 0.2, τp = 0.2, τθ = 15◦.

The performance of G* for different values of θ are shown in
Table VI. The reduction in the optimality gap was the highest
when θ = 3π

2 and lowest when θ = 0. These differences are
likely a result of the distribution and the shapes of the obstacles
with respect to the initial and final configurations.

D. G* Bounds for the instances presented in Fig. 2
For the instances in Fig. 2, we used the following pa-

rameters: ρ = 3, τi = 0.2, τp = 0.2, τθ = 15◦. Bounds
obtained using G* along with others are presented in Fig. 14.
These results suggest G* can provide significant improvement
over the existing lower bounding approaches. Also, in Fig.
15, we plot the convergence of the upper and lower bounds
for a specific instance as a function of the running time
of the algorithms. Clearly, the upper bounds (generated by
asymptotically optimal algorithms) continue to decrease while
the bounds generated by G* continue to increase with respect
to the computational time.



Fig. 15: A comparison of G* bound and Upper Bound
convergence for a runtime of 10 minutes. The instance under
consideration is generated on a map with dimensions 16 units
× 9 units and has 15 obstacles. The minimum turning radius
of the vehicle is set to 2 units.

VII. CONCLUSION

We presented G* that computes lower bounds to the CSP
problem in the presence of a general class of obstacles. G*
relies on optimally solving a new motion planning problem
called the Dubins Gate problem (DGP). We find optimal
solutions for the DGP and prove that the cost of the solution
produced by G* is a lower bound to the CSP problem.
Extensive numerical results were also presented to corroborate
the performance of G*.

G* can be extended and generalized in several ways. If there
is no computational time limit and the tolerances converge to
zero, we would first like to show that the bounds produced
by G* also converge to the optimum of the CSP problem.
Another aspect is that the gates generated in this article
correspond to vertical line segments, and only the forward
connecting edges between the gates are added. This approach
may not be suitable for maps such as mazes where the
obstacles can intersect the boundaries of the map. This could
be addressed by generalizing the gate generation process using
cues from road-maps. Another future direction could be in
constructing feasible paths for the CSP problem based on the
lower bounding solutions, and showing approximation bounds.
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APPENDIX

Notation: µ(S) = 1, if S is true, µ(S) = −1, if S is false.

A. Proof of Lemma 1
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Fig. 16: Dubins CSC paths

Proof: We only prove this lemma for the LSL and
LSR paths. Due to the symmetry, the proofs for RSR and
RSL paths follow similarly. Without loss of generality, we

assume the initial heading is 0 with respect to x−axis. Let
the vectors v1 and v2 be defined as the following (refer to
Fig. 16): v1 := B − A and v2 := D − C. Let C1 and C2 be
the centers of the first and last segments in the CSC path.

Case LSL: For an LSL path, the centers are given as
C1 = (Ax + λ1v

1
x, Ay + λ1v

1
y + ρ) and C2 = (Cx + λ2v

2
x −

ρ sin θ2, Cy + λ2v
2
y + ρ cos θ2). Let lx(λ) and ly(λ) denote

the projections of the S segment in the LSL path along the x-
axis and y-axis respectively (Fig. 16a). Note that lx(λ1, λ2) =
Ax+λ1v

1
x−Cx−λ2v2x+ρ sin θ2 and ly(λ1, λ2) = Ay+λ1v

1
y+

ρ − Cy − λ2v2y − ρ cos θ210. The length of the S segment is

given as lS(λ1, λ2) =
√
l2x + l2y .

Now, lLSL(λ1, λ2) = lS(λ) + ρ(ϕ1(λ1, λ2) + ϕ2(λ1, λ2)).
Since ϕ1(λ1, λ2) + ϕ2(λ1, λ2) = θ2, lLSL = lS(λ1, λ2) +
ρθ2. Therefore, the minimum of lLSL for λ1, λ2 ∈ [0, 1] may
occur at the boundary points or at a local minimum where
d
dλi

lLSL(λ1, λ2) =
d
dλi

lS(λ1, λ2) = 0. Differentiating lS with
respect to λi and simplifying the resulting expression, we get,

d

dλi
ls =

1

ls
(vxi lx + vyi ly) ,

Therefore, d
dλi

lS = 0 implies that vxi lx + vyi ly = 0, i.e.,
the straight line segment in the LSL path is perpendicular to
AB for i = 1, or the straight line segment in the LSL path
is perpendicular to CD for i = 2.

Case LSR: The centers corresponding to the L and the R
segments of the LSR path are given as follows: C1 = (Ax +
λ1v

1
x, Ay +λ1v

1
y + ρ) and C2 = (Cx+λ2v

2
x+ ρ sin θ2, Cy +

λ2v
2
y − ρ cos θ2). The quantities lx and ly , shown in Fig. 16b,

are defined as, lx := Ax−Cx+λ1v1x−λ2v2x−ρ sin θ2 and ly :=
Ay−Cy+λ1v1y−λ2v2y+ρ+ρ cos θ2. The length of the straight

line segment, lS =
√
l2x + l2y − 4ρ2. The quantities ψ1 and ψ2,

shown in in Fig. 16b, are given as following: ψ1 = arctan(
ly
lx
)

and ψ2 = arctan( 2ρlS ). Since ϕ1 + ϕ2 = 2(ψ1 + ψ2)− θ2, the
derivative of the length of the path is given as below,

∂

∂λi
lLSR =

∂

∂λi
lS + 2ρ

∂

∂λi
(ψ1 + ψ2).

Differentiating lS , ψ1 and ψ2 with respect to λi, we get

∂

∂λi
lS = µ(i = 1)(lxv

i
x + lyv

i
y), (1)

∂

∂λi
ψ1 = µ(i = 1)

lxv
i
y − lyvix
l2x + l2y

, (2)

∂

∂λi
ψ2 = −µ(i = 1)

2ρ(lxv
i
x + lyv

i
y)

(l2x + l2y)lS
. (3)

This derivative of the length lLSR is obtained as

∂

∂λi
lLSR = µ(i = 1)

[
vix cosϕ1 + viy sinϕ1

]
. (4)

10For simplicity, in some places, we write lx, ly instead of
lx(λ1, λ2), ly(λ1, λ2).
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Clearly, ∂
∂λi

lLSR = 0 when the straight line segment in the
LSR path is perpendicular to AB for i = 1, or the straight
line segment in the LSR path is perpendicular to CD for
i = 2.

B. Proof of Lemma 2
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Fig. 17: Dubins LRL path

Proof: We prove this result for the LRL path, and the
proof for the RLR path follows similarly, due to symmetry.
The minimum of lLRL with respect to λ1 or λ2 should occur
at a local minima or at the boundary points. We show the local
extrema is always a maximum. Without loss of generality, we
assume the starting heading as 0. The centers C1 and C3 of
the L segments in the LRL path (refer to Fig. 17) are (Ax +
λ1v

1
x, Ay+λ1v

1
y+ρ) and (Cx+λ2v

2
x−ρ sin θ2, Cy+λ2v2y+

ρ cos θ2). Let lx and ly be the projections of C1C3 on x−axis
and y−axis respectively, and are given as lx = Ax + λ1v

1
x −

Cx− λ2v2x+ ρ sin θ2 and ly = Ay + λ1v
1
y + ρ−Cy − λ2v2y −

ρ cos θ2. The length of C1C3, lcc :=
√
l2x + l2y . We know that

ϕ1+ϕ2+ϕ3 = θ2− θ1+2ϕ2, and ϕ2 = 2ψ1+π. The length
of the path, lLRL = ρ(4ψ1 + 2π + θ2), and its derivative,
∂
∂λi

lLRL = 4ρ ∂
∂λi

ψ1. The quantity ψ1 is given by arccos( lcc4ρ ),

where lcc =
√
l2x + l2y , and thus we get the derivatives of lLRL

as the following:

∂

∂λi
lLRL =− 4ρ√

16ρ2 − l2cc

1

lcc
(vixlx + viyly),

∂2

∂λ2i
lLRL =

∂

∂λi

(
− 4ρ

lcc
√
16ρ2 − l2cc

)
(vixlx + viyly)

− 4ρ

lcc
√
16ρ2 − l2cc

(vix
2
+ viy

2
).

At the local extrema vixlx+v
i
yly = 0, and therefore ∂2

∂λ2 lLRL =

− 4ρ

lcc
√

16ρ2−l2cc
(vix

2
+ viy

2
) < 0; i.e., the local extremum is

always a maximum.

C. Proof of Lemma 3

We prove this lemma for the LS and LR paths, and the
proofs for RS and RL paths follows similarly.
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Fig. 18: Dubins two-segment paths with initial heading given,
the final heading depends on the initial and final positions.

Case LS: Without loss of generality, we assume θ1 is 0.
The final heading is a function of λ1 and λ2, and it cannot
be chosen independently. The start and end points of the LS
path (refer to Fig. 18a) are p1 = A + λ1v

1 and p2 = C +
λ2v

2, respectively. We get the following equations from the
projections of p1p2 on x and y axes:

ρ sinϕ1 + lS cosϕ1 = Cx + λ2v
2
x −Ax − λ1v1x,

ρ− ρ cosϕ1 + lS sinϕ1 = Cy + λ2v
2
y −Ay − λ1v1y.

Differentiating with respect to λi, we get,

ρ cosϕ1
∂ϕ1
∂λi

+
∂lS
∂λi

cosϕ1 − lS sinϕ1
∂ϕ1
∂λi

= µ(i = 2)vix,

ρ sinϕ1
∂ϕ1
∂λi

+
∂lS
∂λi

sinϕ1 + lS cosϕ1
∂ϕ1
∂λi

= µ(i = 2)viy.



Using the above equations, we get ∂lLS

∂λi
= ρ∂ϕ1

∂λi
+ ∂lS

∂λi
=

vix cosϕ1 + viy sinϕ1. At the local minima, vix cosϕ1 +
viy sinϕ1 = 0, which implies the straight line segment in the
LS path is perpendicular to AB for i = 1 or the straight line
segment in the LS path is perpendicular to CD for i = 2.

Case LR: The initial and final points are defined similar
to the LS path. We get the following equations from the
projections of p1p2:

2ρ cos(
ϕ1 − π

2
) + ρ cos(

π

2
+ θ2) =Cx + λ2v

2
x −Ax − λ1v1x,

2ρ sin(ϕ1 −
π

2
) + ρ sin(

π

2
+ θ2) =Cy + λ2v

2
y −Ay − λ1v1y

− ρ.

Differentiating the above with respect to λi, we get,

2ρ cosϕ1
∂ϕ1
∂λi
− ρ cos θ2

∂θ2
∂λi

= µ(i = 2)vix,

2ρ sinϕ1
∂ϕ1
∂λi
− ρ sin θ2

∂θ2
∂λi

= µ(i = 2)viy.

The length of the LR paths is lLR = ρ(ϕ1+ϕ2) = ρ(2ϕ1−θ2).
Using the above equations, we obtain the partial derivative of
lLR as given below,

∂lLR
∂λi

= µ(i = 2)
vix sin θ2 − viy cos θ2 − vix sinϕ1 + viy cosϕ1

sin(θ2 − ϕ1)
,

= 2µ(i = 2)
sin( θ2−ϕ1

2 )
[
vix cos(

θ2+ϕ1

2 ) + viy sin(
θ2+ϕ1

2 )
]

sin(θ2 − ϕ1)
.

At the extremum, ∂lLR

∂λi
= 0. This could happen if θ2 = ϕ1,

which essentially means the second arc in LR path vanishes,
and therefore is a degenerate case. Therefore, vix cos(

θ2+ϕ1

2 )+

viy sin(
θ2+ϕ1

2 ) = 0, implying that p1p2 is perpendicular to AB
for i = 1, or p1p2 is perpendicular to CD for i = 2.

D. Proof of Lemma 4
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Fig. 19: Dubins two segment path SL.

The path SL with the final heading given is a reflection of
the path LS with the initial heading given, and therefore the
local extrema is similar to that of the LS path, which occurs
when the straight line segment is perpendicular to AB or CD.
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