G^{*} : A New Approach to Bounding Curvature Constrained Shortest Paths through Dubins Gates

Satyanarayana G Manyam Infoscitex Corp.
Dayton, OH 45431
Email: msngupta@gmail.com

Abhishek Nayak
Texas A\&M University
College Station, TX 77843
Email: nykabhishek@tamu.edu

Sivakumar Rathinam
Texas A\&M University
College Station, TX 77843
Email: srathinam@tamu.edu

Abstract

We consider a Curvature-constrained Shortest Path (CSP) problem on a 2 D plane for a robot with minimum turning radius constraints in the presence of obstacles. We introduce a new bounding technique called Gate* (\mathbf{G}^{*}) that provides optimality guarantees to the CSP. Our approach relies on relaxing the obstacle avoidance constraints but allows a path to travel through some restricted sets of configurations called gates which are informed by the obstacles. We also let the path to be discontinuous when it reaches a gate. This approach allows us to pose the bounding problem as a least-cost problem in a graph where the cost of traveling an edge requires us to solve a new motion planning problem called the Dubins gate problem. In addition to the theoretical results, our numerical tests show that \mathbf{G}^{*} can significantly improve the lower bounds with respect to the baseline approaches, and by more than $\mathbf{6 0 \%}$ in some instances.

I. Introduction

Finding a collision-free path for a robot in the midst of obstacles is a fundamental problem in Robotics [1]-[3]. In this paper, we consider a Curvature-constrained Shortest Path (CSP) problem on a 2 D plane for a robot with minimum turning radius constraints. Specifically, given an initial and a final configuration the minimum turning radius ($\rho>0$) of the robot and a set of obstacles in the 2D plane, the objective is to find a shortest, collision-free path from the initial to the final configuration such that the radius of curvature at any point on the path is at least equal to ρ (refer to Fig. [1]. This is a central problem that arises in applications for mobile robots controlled by steering mechanisms or for fixed-wing aerial robots with turn-rate constraints. There has been considerable work on the CSP and related problems under the general area of nonholonomic motion planning in the Robotics literature [4]-[13]. Our focus in this paper is on the optimality guarantees for the CSP.
In the absence of obstacles, the CSP problem reduces to the classic shortest path problem considered by L.E. Dubins in [14]. Dubins showed that the shortest path between two configurations on a 2 D plane belongs to a family of 6 paths where each path is a concatenation of at most 3 pieces, each of which is a straight line or a circular arc [14]. This shortest path problem can also be formulated as an optimal control problem and solved using Pontryagin's minimum principle, as shown in [7].

[^0]

Fig. 1: Illustration of a CSP for an instance with two obstacles.
In the presence of obstacles, it is much harder to compute a CSP. In [10], Forture and Wilfong develop an exact algorithm that can decide if the shortest path exists (but do not find such a path) when the obstacles are polygons. Reif and Wang [11] show that finding a CSP is NP-hard when the obstacles are polygons with a total of k vertices and the vertex positions are specified within $O\left(k^{2}\right)$ bits. Apart from the special case addressed in [9] for disjoint, convex obstacles with boundaries consisting of line segments or circular arcs of unit radius, we are not aware of any exact algorithms for finding a CSP. Since finding the optimum is difficult, there are two ways of generating optimality guarantees (a-priori and a-posteriori) for the CSP. A-priori guarantees obtained through approximation algorithms provide theoretical upper bounds on the length of the paths found by the algorithms with respect to the optimum in polynomial time; they are theoretical worst-case bounds, generally true for any instance of the problem. Given length l, and a factor $\epsilon>0$, an approximation algorithm is presented in [12] which either outputs that no feasible path with length at most equal to l exists or finds such a path whose length is at most $(1+\epsilon)$ times the optimum. This algorithm runs in time polynomially bounded in n (the total number of obstacle vertices and edges), m (the bit precision of the input), $\frac{1}{\epsilon}$, and l. More approximation results are presented in [13] for a scenario with moderat ε^{2} obstacles. Robust variants of the CSP with polygonal obstacles [15], [16], and CSPs inside a polygon [17] have also been addressed. While all the existing approximation

[^1]algorithms for a CSP in the presence of polygonal or moderate obstacles provide theoretical guarantees, to the best of our knowledge, we are not aware of any implementations of these algorithms on any test instance.

Given a problem instance, there are also other ways (sampling-based methods [18]-[20], heuristics [21], [22]) for obtaining feasible solutions to the CSP problem. We are then interested in addressing the following question in this paper:
Given a feasible solution to the CSP problem, how do we know how good the solution is? The only way to answer this question is to compare the length of the feasible solution to the optimum. Since we do not know how to find the optimum, we develop algorithms that can find tight lower bounds or underestimates to the optimum, which then provide us with a posterior ${ }^{3}$ guarantees. With respect to the lower bounds, there are two of them that are readily available for the CSP. The first lower bound can be obtained by finding a CSP ignoring the obstacles (referred to as the Dubins lower bound), and the second lower bound can be obtained by finding a shortest, Euclidean path in the presence of obstacles while ignoring the curvature constraints (referred to as the Euclidean lower bound). Other than these two lower bounds, we are not aware of any other lower bound for the CSP problem available in the literature. While these two lower bounds are relatively easy to compute, they may not be tight. For example, in Fig. 2, we show a comparison between these lower bounds and the length of the feasible paths obtained by some of the best samplingbased methods for 30 instances. On average, the deviation of the feasible solutions from these lower bounds is $\approx 60 \%$, and it gets as worse as $\approx 80 \%$ for some instances. Our main objective in this paper is to improve on these lower bounds (or a-posteriori guarantees) and, as a result, provide more accurate estimates of the quality of the feasible solutions for the CSP.

Fig. 2: Comparison between the upper bound (length of the best feasible solution) generated by sampling-based methods (RRT*, BIT*, FMT*) and the two lower bounds for 30 instances. Instances consist of 10-20 obstacles in a 16 x 9 map. Also, ρ is set to 3 .

To obtain lower bounds, we can relax some constraints in the CSP. The choice of which constraint to relax is critical

[^2]

Fig. 3: Illustration of Gates.

Fig. 4: Graph construction using gates.
because otherwise, we may end up with either poor lower bounds or relaxations that remain challenging to solve. In this paper, we relax the obstacle avoidance constraints but allow a path to travel through some restricted sets of configurations called gates which are informed by the obstacles. We also allow for the paths to be discontinuous when it enters a gate. Similar ideas on relaxing the continuity of the paths have been successfully applied to the Dubins Traveling Salesman Problem and its extensions in [23], [24] to obtain optimality guarantees. To illustrate our ideas, for any line segment $\overline{X Y}$, consider $\hat{G}_{\overline{X Y}}:=\left\{(x, y, \theta):(x, y) \in \overline{X Y}, \theta \in\left[-\frac{\pi}{2},+\frac{\pi}{2}\right]\right\}$, a set of configurations referred to as a gate associated with line segment $\overline{X Y}$. For an example scenario shown in Fig. 3, it is clear that any feasible path (if it exists) must first pass through $\hat{G}_{\overline{A B}}$ or $\hat{G}_{\overline{C D}}$, and then through either $\hat{G}_{\overline{E F}}$ or $\hat{G}_{\overline{G H}}$.

Allowing a path to be discontinuous when it traverses through a gate enables us to pose the lower bounding problem as a shortest path problem in the following way: The gates and the initial/final configurations are represented as vertices in a newly constructed directed and acyclic graph \mathcal{G} as shown in Fig. 4 The minimum length of the curvature-constrained shortest path between any two adjacent gates or vertices is obtained by formulating and solving a new motion planning problem called the Dubins Gate problem. This length is set as the cost of the corresponding edge in \mathcal{G}. Once we compute the costs of all the edges in the graph, we solve for a leastcost path from the initial to the final configuration in \mathcal{G}, the cost of which is a lower bound to the CSP. The procedure for adding gates to \mathcal{G} is accomplished through an iterative process. Each iteration of our approach adds a new set of gates, and the updated lower bounding solution (least-cost

Fig. 5: Obstacle Map.
path) further informs us on the choice of the gates to add in the next iteration. This iterative procedure terminates when we reach the computational time limit or when we cannot add any more gates (based on the parameters we specify). We refer to our approach as Gate* $\left(G^{*}\right)$. We also present extensive numerical tests to show that G^{*} can significantly improve the lower bounds with respect to the baseline approaches, and by more than 60% in some instances.

II. Problem Statement

The configuration of the robot at time t is represented as $(x(t), y(t), \theta(t))$ where $(x(t), y(t))$ denotes the position and $\theta(t)$ denotes the heading angle of the robot at time t. Without loss of generality, we assume both the initial and final configurations of the robot lie on the x-axis. That is, we let $c_{s}:=\left(0,0, \theta_{s}\right)$ denote the initial configuration of the robot at time $t=0$. The final (desired) configuration of the robot is denoted by $c_{f}:=\left(x_{f}, 0, \theta_{f}\right)$. Also, without loss of generality, we assume the robot travels at unit speed; therefore, the time elapsed is the same as the distance traversed along the path. Let Ω denote a set of obstacles in a 2D plane. We assume each obstacle is a either a convex polygor \square^{4} or a disc but they can intersect allowing for non-convex regions where obstacles are present (Fig. 55). Any path between c_{s} and c_{f} is feasible if it does not intersect with the interior of any obstacle and the radius of curvature at any point on the path is at least equal to ρ. The objective of the CSP is to find a shortest, feasible path from c_{s} to c_{f}.

III. Preliminaries and Notations

A gate consists of a set of all the configurations (x, y, θ) such that (x, y) lies on a line segment and θ is any angle in a given sector of angles. Specifically, if the line segment connecting two points A and B is denoted as $\overline{A B}$ and the sector of angles is denoted as $\left[\theta_{\min }, \theta_{\max }\right]$, then the corresponding gate

[^3]

Fig. 6: Illustration of the gate $G_{\overline{A B}}\left(\theta_{\min }, \theta_{\max }\right)$ corresponding to line segment $\overline{A B}$. As usual, angles are measured in the counter-clockwise direction with respect to the x-axis.

Fig. 7: An example of a feasible path for the Dubins Gate Problem (DGP). Note that the departure and the arrival configurations of Dubins path (in blue color) must satisfy the heading angle constraints.
$G_{\overline{A B}}\left(\theta_{\min }, \theta_{\max }\right)$ is defined as $\{(x, y, \theta):(x, y) \in \overline{A B}, \theta \in$ $\left.\left[\theta_{\min }, \theta_{\max }\right]\right\}$. Refer to Fig. 6 for an illustration.

The initial and the final configurations of the robot can be also viewed as special cases of gates where the line segments and the sectors reduce to points and angles respectively. To simplify the presentation, we interchangeably refer to any vertex in the graph \mathcal{G} as a gate, and vice-versa. While there are several ways of choosing and adding gates to \mathcal{G}, in this paper, we only add gates corresponding to vertical line segments. Also, we only add a gate if the x-coordinate of any configuration in the gate lies strictly between 0 and x_{f} (the initial and final x-coordinates of the robot) ${ }^{5}$. This allows us to generate a simpler graph (directed and acyclic) like the one shown in Fig. 4 Other possibilities for generating gates will be considered in future work. Since we only add

[^4]gates corresponding to vertical line segments, the gates in \mathcal{G} can be partitioned into disjoint subsets $V_{i}, i=1 \cdots, l$ ($l \geq 2$) such that the x-coordinate of any configuration in any gate of V_{i} is the same (lets call this x-coordinate as $\bar{x}\left(V_{i}\right)$), and $\bar{x}\left(V_{1}\right)<\bar{x}\left(V_{2}\right) \leq \bar{x}\left(V_{3}\right) \cdots \leq \bar{x}\left(V_{l-1}\right)<\bar{x}\left(V_{l}\right)$. By our gate construction process, note that $V_{1}=\left\{c_{s}\right\}$ and $V_{l}=\left\{c_{f}\right\}$. For example, in Fig. 4 the six gates (or vertices) of \mathcal{G} can be partitioned into $V_{1}=\left\{c_{s}\right\}, V_{2}=\left\{\hat{G}_{\overline{A B}}, \hat{G}_{\overline{C D}}\right\}$, $V_{3}=\left\{\hat{G}_{\overline{E F}}, \hat{G}_{\overline{G H}}\right\}, V_{4}=\left\{c_{f}\right\}$.

Given two gates $G_{\overline{A B}}\left(\theta_{1}^{l}, \theta_{1}^{u}\right)$ and $G_{\overline{C D}}\left(\theta_{2}^{l}, \theta_{2}^{u}\right)$, the Dubins Gate Problem (DGP) aims to find the shortest curvature constrained path from a configuration in $G_{\overline{A B}}\left(\theta_{1}^{l}, \theta_{1}^{u}\right)$ to a configuration in $G_{\overline{C D}}\left(\theta_{2}^{l}, \theta_{2}^{u}\right)$. This problem is new and has not been addressed in the literature. However, in the special case when the line segments $\overline{A B}, \overline{C D}$ reduce to points, the DGP simplifies to the Dubins Interval Problem (DIP) which has been solved in the literature [25]. Even though the gates generated in this paper correspond to vertical line segments, we make no such assumptions while solving the DGP (Fig. 7.

We will briefly review the main result for the Dubins interval problem as it will be used to solve DGP. Suppose L and R represent the left (counter-clockwise) and the right (clockwise) circular arcs with radius equal to ρ, and let S represent a straight line segment. Also, let L_{ψ} or R_{ψ} denote left or right circular arcs with an arc angle equal to ψ. A three segment path for the Dubins interval problem, say $\operatorname{LSR}\left(\theta_{1}, \theta_{2}\right)$, follows the sequence L, S and R, and starts with heading equal to $\theta_{1} \in\left[\theta_{1}^{l}, \theta_{1}^{u}\right]$ and ends with heading equal to $\theta_{2} \in\left[\theta_{2}^{l}, \theta_{2}^{u}\right]$. Other three segment paths can be defined similarly. For two segment paths, the initial or the final heading angle is specified while the other heading is derived based on the path type. For example, $L S\left(\theta_{1}^{u}, \theta_{2}\left(\theta_{1}^{u}\right)\right)$ denotes a $L S$ path that starts at heading equal to θ_{1}^{u} and ends at a heading equal to $\theta_{2}\left(\theta_{1}^{u}\right)$ which is a function of θ_{1}^{u}. The initial and final headings for single segment paths can be specified directly based on the path type. The main result in [25] states that the shortest path for the Dubins interval problem must be one of the following candidate path $\sqrt{6}^{6}$ or a degenerate form of these:

- Paths with three segments: $\operatorname{LSR}\left(\theta_{1}^{u}, \theta_{2}^{u}\right), \operatorname{LSL}\left(\theta_{1}^{u}, \theta_{2}^{l}\right)$, $\operatorname{LRL}\left(\theta_{1}^{u}, \theta_{2}^{l}\right), \quad R S L\left(\theta_{1}^{l}, \theta_{2}^{l}\right), \quad R S R\left(\theta_{1}^{l}, \theta_{2}^{u}\right) \quad$ and $R L R\left(\theta_{1}^{l}, \theta_{2}^{u}\right)$.
- Paths with two segments: $L S\left(\theta_{1}^{u}, \theta_{2}\left(\theta_{1}^{u}\right)\right)$, $R S\left(\theta_{1}^{l}, \theta_{2}\left(\theta_{1}^{u}\right)\right), \quad S L\left(\theta_{1}\left(\theta_{2}^{l}\right), \theta_{2}^{l}\right), \quad S R\left(\theta_{1}\left(\theta_{2}^{u}\right), \theta_{2}^{u}\right)$, $L R\left(\theta_{1}^{u}, \theta_{2}\left(\theta_{1}^{u}\right)\right), \quad L R\left(\theta_{1}\left(\theta_{2}^{u}\right), \theta_{2}^{u}\right), \quad R L\left(\theta_{1}^{l}, \theta_{2}\left(\theta_{1}^{u}\right)\right)$ and $R L\left(\theta_{1}\left(\theta_{2}^{l}\right), \theta_{2}^{l}\right)$.
- Paths with one segment: S, L_{ψ} and R_{ψ}, where $\psi>\pi$.

IV. G^{*} Algorithm

The overall pseudo-code of G^{*} is given in Algorithm 1 G* first initializes \mathcal{G} with just two vertices c_{s} (initial configuration) and c_{f} (final configuration) and an edge between them (line 14 of Alg. 11. The cost of traveling the edge $\left(c_{s}, c_{f}\right)$ is set

[^5]```
Algorithm 1: G* \(^{*}\)
 Inputs:
 \(2 \Omega\) // Set of obstacles
 3 size (obs) \(\forall\) obs \(\in \Omega / /\) sizes of obstacles
 \(4 c_{s}, c_{f} / /\) Initial, final configurations
 \(5 \tau_{i} / /\) Obstacle intersection tolerance
 \(6 \tau_{p} / /\) Position continuity tolerance
 \(7 \tau_{\theta} / /\) Angle continuity tolerance
 \(8 T_{m} / /\) Computational time limit
 9 Output:
 \(l_{l b} / /\) Lower bound for CSP
 path \(h_{l b} / /\) Lower bounding path
 Initialization:
 TimeElapsed \(\leftarrow 0 / /\) Running time \(G *\)
 \(V \leftarrow\left\{c_{s}, c_{f}\right\}, E \leftarrow\left\{\left(c_{s}, c_{f}\right)\right\} \mathcal{G} \leftarrow(V, E)\)
 \(\operatorname{cost}\left(c_{s}, c_{f}\right) \leftarrow\) Dubins path length between \(c_{s}\) and \(c_{f}\)
 path \(^{*} \leftarrow\left(c_{s}, c_{f}\right)\)
 path \(_{l b} \leftarrow\) Dubins path between \(c_{s}\) and \(c_{f}\)
 Main Loop:
 while path \(_{l b}\) is infeasible \& TimeElapsed \(\leq T_{m}\) do
 for \(o b s \in \Omega\) do
 if path \(_{l b}\) intersects \(o b s\) then
 \(l_{c} \leftarrow\) chord length of the intersection of
 \(p^{*} h_{l b}\) with obs
 \(r \leftarrow \frac{l_{c}}{\text { size(obs) }}\)
 if \(r>\tau_{i} \& 0 \leq x_{c} \leq x_{f}\) then
 Add new gates to \(\mathcal{G}\) as in Fig. 8(c)
 Update the set of edges in \(\mathcal{G}\)
 end
 end
 end
 \(\mathcal{S}_{d c} \leftarrow\) Set of all the discontinuities in path \({ }_{l b}\)
 if \(\left|\mathcal{S}_{d c}\right| \geq 1\) then
 for \(\bar{C} \in \mathcal{S}_{d c}\) do
 \(/ /\) Let \(\bar{C}:=\left\{\left(x_{a}, y_{a}, \theta_{a}\right),\left(x_{d}, y_{d}, \theta_{d}\right)\right\}\)
 if \(\left|y_{a}-y_{d}\right| \geq \tau_{p}\) or \(\left|\theta_{a}-\theta_{d}\right| \geq \tau_{\theta}\) then
 Delete and add new gates to \(\mathcal{G}\) as
 shown in Fig. 9(b) and Fig. 9(c)
 Update the set of edges in \(\mathcal{G}\)
 end
 // If both \(\left|y_{a}-y_{d}\right| \geq \tau_{p}\) and
 \(\left|\theta_{a}-\theta_{d}\right| \geq \tau_{\theta}\) are true, we
 first add new gates as in
 Fig. 9(b) and then, add
 more sectors to each new
 gate as in Fig. 9(c)
 end
 end
 for any new edge \((u, v)\) added in \(\mathcal{G}\) do
 \(\operatorname{cost}(u, v) \leftarrow\) optimal Dubins path length from
 gate \(u\) to gate \(v\) (solve corresponding DGP).
 end
 path \({ }^{*} \leftarrow\) a least-cost path in \(\mathcal{G}\)
 path \(_{l b} \leftarrow\) The Dubins lower bounding path
 corresponding to path*
 end
 \(l_{G *} \leftarrow\) sum of the edge costs in path*
 return \(l_{G *}\), path \(_{l b}\)
```

Bōund̄āy


Boundary

$$
r:=\frac{l_{c}}{\operatorname{size}\left(o b s_{1}\right)}
$$


(b)

(c)

Fig. 8: (a) There are two obstacles, $o b s_{1}$ and $o b s_{2}$ in this illustration. path $h_{l b}$ is intersecting $o b s_{1}$ at points $A$ and $B$. (b) The line segment that joins $A$ and $B$ is referred to as a chord. Here, the parameter $r$ is a measure of the extent to which path $h_{l b}$ intersects the obstacle $o b s_{1}$. Here, the size of a polygonal obstacle is defined as the length of the longest edge of the obstacle. New gates are added by intersecting the vertical line segment passing through the center $\left(x_{c}\right)$ of the chord with the free space. Each line segment in $\{\overline{C D}, \overline{E F}, \overline{G H}\}$ is initially associated with three sectors $\left[0, \frac{2 \pi}{3}\right],\left[\frac{2 \pi}{3}, \frac{4 \pi}{3}\right]$ and $\left[\frac{4 \pi}{3}, 2 \pi\right]$. Therefore, there are three new gates created corresponding to each line segment in $\{\overline{C D}, \overline{E F}, \overline{G H}\}$.


Fig. 9: (a) There are three gates associated with line segment $E F$, i.e, $G_{\overline{E F}}\left(0, \frac{2 \pi}{3}\right), G_{\overline{E F}}\left(\frac{2 \pi}{3}, \frac{4 \pi}{3}\right)$, and $G_{\overline{E F}}\left(\frac{4 \pi}{3}, 2 \pi\right)$. A lower bounding path, path $h_{l b}$, is reaching gate $G_{\overline{E F}}\left(\frac{4 \pi}{3}, 2 \pi\right)$ at $\left(x_{a}, y_{a}, \theta_{a}\right)$ and departing $G_{\overline{E F}}\left(\frac{4 \pi}{3}, 2 \pi\right)$ at $\left(x_{d}, y_{d}, \theta_{d}\right)$. The discontinuity in position here is $\Delta y:=y_{a}-y_{d}$ and the discontinuity in heading angle is $\Delta \theta:=\left|\theta_{a}-\theta_{d}\right|$. (b) If $\Delta y>\tau_{p}$, then partition line segment $\overline{E F}$ into two equal segments $\overline{E G}$ and $\overline{G F}$. Delete the gates corresponding to $\overline{E F}$ and add three new gates corresponding to each line segment in $\{\overline{E G}, \overline{G F}\}$. (c) Similarly, if $\Delta \theta>\tau_{\theta}$, then partition the existing sector $[2 \pi / 3,2 \pi]$ into $\left[2 \pi / 3, \theta_{n}\right]$ and $\left[\theta_{n}, 2 \pi\right]$ as shown in the figure. Also, delete the gate corresponding to $[2 \pi / 3,2 \pi]$ and add the new gates.
to the length of the shortest Dubins path from $c_{s}$ to $c_{f}$ (line 15 of Alg. 11. The cost of any path in $\mathcal{G}$ is defined as the sum of the cost of the edges in the path. A least-cost path from $c_{s}$ to $c_{f}$ found in $\mathcal{G}$ is denoted as path*, and is updated during each iteration of the algorithm. Note that path* is a sequence of vertices in $\mathcal{G}$, and an edge joining any two adjacent vertices in path ${ }^{*}$ corresponds to a Dubins path. Therefore, we keep track of path* as well as its corresponding collection of Dubins paths in path $h_{l b}$ (lines 16-17 of Alg. 11. path $h_{l b}$ may not be feasible when it crosses a gate; i.e., the arrival configuration $\left(x_{a}, y_{a}, \theta_{a}\right)$ of the path at a gate may not be equal to the departure configuration $\left(x_{d}, y_{d}, \theta_{d}\right)$ at the gate (Fig. 9(a)). A discontinuity in a path is then defined as a tuple with its unequal arrival and departure configurations. We will later show that path $_{l b}$ found at the end of any iteration of $\mathrm{G}^{*}$ is a lower bounding solution to the CSP. If path $h_{l b}$ turns out to be feasible (i.e,, it does not intersect the interior of any of the obstacles and does not contain any discontinuities), it must be an optimal solution to the CSP. However, this is generally not the case.

In each iteration of $\mathrm{G}^{*}$, if path $h_{l b}$ is infeasible and the run time of $\mathrm{G}^{*}$ has not exceeded the limit $\left(T_{m}\right)$, we add new gates to $\mathcal{G}$ and update it based on the type of infeasibility in path $h_{l b}$ as follows:

- Infeasibility type: path $_{l b}$ passes through the interior of an obstacle (lines 20-29 of Alg. 1): Refer to Fig. 8 . We add new gates (as vertices) to $\mathcal{G}$ based on a measure $(r)$ that specifies the extent to which path $h_{l b}$ intersects an obstacle. Refer to Fig. 8 (b) on how we compute this measure. If this measure exceeds the given obstacle intersection tolerance ( $\tau_{i}$ ) and the center of the chord $\left(x_{c}\right)$ strictly lies between 0 and $x_{f}$, we add a fixed number of gates 7 to $\mathcal{G}$ for each line segment as shown in Fig. 8(c). Updating $\mathcal{G}$ : Consider the partition of $V$ into subsets $V_{1}, V_{2}, \cdots, V_{l}$ (as described in section III) such that $\bar{x}\left(V_{1}\right)<\bar{x}\left(V_{2}\right) \leq \bar{x}\left(V_{3}\right) \cdots \leq \bar{x}\left(V_{l-1}\right)<\bar{x}\left(V_{l}\right)$. Let $V_{k}$ for some $k \in\{2, \cdots, l-1\}$ be the set of new gates that has been added. To update the edges in $\mathcal{G}$, we (1) delete all the edges from any gate in $V_{k-1}$ to any gate in $V_{k+1}$, (2) add edges from each gate in $V_{k-1}$ to all the gates in $V_{k}$ and (3) add edges from each gate in $V_{k}$ to all the gates in $V_{k+1}$.
- Infeasibility type: path $_{l b}$ has a path discontinuity in position (lines 30-38 of Alg. 1): Refer to Fig. 9(b). If the Euclidean distance between the arriving and departing configurations at a discontinuity is more than a given position continuity tolerance (say $\tau_{p}$ ), we partition line segment $\overline{E F}$ into two equal segments $\overline{E G}$ and $\overline{G F}$, and add new gates corresponding to each line segment in $\{\overline{E G}, \overline{G F}\}$. We note here that the new gates will inherit the same level of angle discretizations as the gates corresponding to $\overline{E F}$. For example, the gates corresponding to $\overline{E F}$ is associated with three sectors $\left[0, \frac{2 \pi}{3}\right],\left[\frac{2 \pi}{3}, \frac{4 \pi}{3}\right]$

[^6]and $\left[\frac{4 \pi}{3}, 2 \pi\right]$; the same sectors will also be inherited by all the new gates.
Updating $\mathcal{G}$ : Similar to the previous infeasibility type, consider the partition of $V$ into subsets $V_{1}, V_{2}, \cdots, V_{l}$ as defined before. Let the new gates be added to $V_{k}$ for some $k \in\{2, \cdots, l-1\}$. To update the edges in $\mathcal{G}$, (1) add edges from each gate in $V_{k-1}$ to all the new gates in $V_{k}$ and (2) add edges from each new gate in $V_{k}$ to all the gates in $V_{k+1}$.

- Infeasibility type: path $_{l b}$ has a path discontinuity in heading (lines 30-38 of Alg. 1): Refer to Fig. 9(c). If the difference between the arrival and departure headings is more than a given angle continuity tolerance (say $\tau_{\theta}$ ), we partition the gates associated with line segment $E F$ as shown in Fig. 9(c).
Updating $\mathcal{G}$ : This step follows the same procedure as presented for the path discontinuity in position.
The cost of each new edge added can be obtained by solving the DGP (lines 39-41 of Alg. 1). At the end of each iteration of $\mathrm{G}^{*}$, a least-cost path (path ${ }^{*}$ ) is computed in $\mathcal{G}$ using Dijkstra's shortest path algorithm [26] (line 42 of Alg. 1], and the iterations continue until the termination criteria are met.


## A. Lower Bounding Proof

If we can solve the DGP to optimality (presented in the next section), the following theorem shows that sum of the edge costs in path* is a lower bound to the CSP problem.

Theorem 1. Consider a CSP problem instance with a feasible solution. Let path* be a least-cost path in $\mathcal{G}$ at the end of any iteration of $G^{*}$ applied to the instance. Let $l_{G *}$ denote the sum of the edge costs in path ${ }^{*}$. Let $l_{\text {opt }}$ denote the optimal length of the CSP. Then, $l_{G *} \leq l_{o p t}$.

Proof: Consider the set of all the gates $V$ in $\mathcal{G}$. Partition the gates into subsets $V_{1}, V_{2}, \cdots, V_{l}$ (as described in section III) such that $\bar{x}\left(V_{1}\right) \leq \bar{x}\left(V_{2}\right) \cdots \leq \bar{x}\left(V_{l}\right)$. No continuous path from $c_{s}$ can reach $c_{f}$ without passing through at least one of the gates in $V_{i}, \forall i=1, \cdots, l$. This implies that any optimal path for the CSP problem must also pass through at least one of the gates in $V_{i}, \forall i=1, \cdots, l$. Let a sequence of gates visited by an optimal path be $\left(g_{1}, g_{2}, \cdots, g_{l}\right)$ where $g_{i} \in V_{i}, i=$ $1, \cdots, l$. Since, for $i=1, \cdots, l, \operatorname{cost}\left(g_{i}, g_{i+1}\right)$ denotes the length of the shortest Dubins path from any configuration in $g_{i}$ to any configuration in $g_{i+1}$, we get $\sum_{i=1}^{l-1} \operatorname{cost}\left(g_{i}, g_{i+1}\right) \leq$ $l_{\text {opt }}$. Note that $\left(g_{1}, g_{2}, \cdots, g_{l}\right)$ is a feasible path in $\mathcal{G}$. Therefore, we also have $l_{G *} \leq \sum_{i=1}^{l-1} \operatorname{cost}\left(g_{i}, g_{i+1}\right)$. Putting these results together, we conclude that $l_{G *} \leq l_{o p t}$.

## V. Solving the Dubins Gate Problem

We use the same notations as the DGP stated in section $\amalg$ Any position $p_{1}$ on line segment $\overline{A B}$ is represented as $p_{1}=$ $A+\lambda_{1} v_{1}$ where $\lambda_{1} \in[0,1]$ and $v_{1}:=B-A$, a vector directed from $A$ to $B$. Similarly, any position $p_{2}$ on line segment $\overline{C D}$ is represented as $p_{2}=C+\lambda_{2} v_{2}$ where $\lambda_{2} \in[0,1]$ and $v_{2}:=$ $D-C$.

TABLE I: List of candidate paths for the DGP

| Path Mode | Candidate Paths |
| :---: | :---: |
| LSL | $\operatorname{LSL}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}^{l}\right), \operatorname{LSL}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{*}, \theta_{2}^{l}\right), \operatorname{LSL}\left(\lambda_{1}^{*}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}^{l}\right)$, for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}$ |
| LSR | $\operatorname{LSR}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}^{u}\right), \operatorname{LSR}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{*}, \theta_{2}^{u}\right), \operatorname{LSR}\left(\lambda_{1}^{*}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}^{u}\right)$, for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}$ |
| RSL | $\operatorname{RSL}\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}^{l}\right), \operatorname{RSL}\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{*}, \theta_{2}^{l}\right), \operatorname{RSL}\left(\lambda_{1}^{*}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}^{l}\right)$, for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}$ |
| RSR | $\operatorname{RSR}\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}^{u}\right), \operatorname{RSR}\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{*}, \theta_{2}^{u}\right), \operatorname{RSR}\left(\lambda_{1}^{*}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}^{u}\right)$, for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}$ |
| LRL | $\operatorname{LRL}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}^{l}\right)$, for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}$ |
| RLR | $R L R\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}^{u}\right)$, for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}$ |
| LS | $\begin{aligned} & \operatorname{LS}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right)\right), \operatorname{LS}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{*}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right)\right), \operatorname{LS}\left(\lambda_{1}^{*}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right)\right), \\ & \operatorname{LS}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}\left(\theta_{2}^{e}\right), \theta_{2}^{e}\right) \text {, for } \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{2}^{e} \in\left\{\theta_{2}^{l}, \theta_{2}^{u}\right\} \end{aligned}$ |
| RS | $\begin{aligned} & R S\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right)\right), \operatorname{RS}\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{*}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right)\right), \operatorname{RS}\left(\lambda_{1}^{*}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right)\right), \\ & R S\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}\left(\theta_{2}^{e}\right), \theta_{2}^{e}\right) \text {, for } \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{2}^{e} \in\left\{\theta_{2}^{l}, \theta_{2}^{u}\right\} \end{aligned}$ |
| SL | $\begin{aligned} & S L\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{l}\right), S L\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right), \lambda_{2}^{*}, \theta_{2}^{l}\right), S L\left(\lambda_{1}^{*}, \theta_{1}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{l}\right), \\ & S L\left(\lambda_{1}\left(\theta_{1}^{e}\right), \theta_{1}^{e}, \lambda_{2}^{e}, \theta_{2}^{l}\right), \text { for } \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{1}^{e} \in\left\{\theta_{1}^{l}, \theta_{1}^{u}\right\} \end{aligned}$ |
| SR | $\begin{aligned} & S R\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{u}\right), S R\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right), \lambda_{2}^{*}, \theta_{2}^{u}\right), S R\left(\lambda_{1}^{*}, \theta_{1}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{u}\right), \\ & S R\left(\lambda_{1}\left(\theta_{1}^{e}\right), \theta_{1}^{e}, \lambda_{2}^{e}, \theta_{2}^{u}\right) \text {, for } \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{1}^{e} \in\left\{\theta_{1}^{l}, \theta_{1}^{u}\right\} \end{aligned}$ |
| LR | $L R\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right)\right), L R\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}^{*}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right)\right), L R\left(\lambda_{1}^{*}, \theta_{1}^{u}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right)\right)$, $L R\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{u}\right), L R\left(\lambda_{1}^{*}, \theta_{1}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{u}\right), L R\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right), \lambda_{2}^{*}, \theta_{2}^{u}\right)$ $\operatorname{LR}\left(\lambda_{1}^{e}, \theta_{1}^{u}, \lambda_{2}\left(\theta_{2}^{e}\right), \theta_{2}^{e}\right), L R\left(\lambda_{1}\left(\theta_{1}^{e}\right), \theta_{1}^{e}, \lambda_{2}^{e}, \theta_{2}^{u}\right)$ for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{i}^{e}, \in\left\{\theta_{i}^{e}, \theta_{i}^{u}\right\}$ |
| RL | $R L\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right)\right), R L\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}^{*}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right)\right), R L\left(\lambda_{1}^{*}, \theta_{1}^{l}, \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right)\right)$, $R L\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{l}\right), R L\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right), \lambda_{2}^{*}, \theta_{2}^{l}\right), R L\left(\lambda_{1}^{*}, \theta_{1}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{l}\right)$ $R L\left(\lambda_{1}^{e}, \theta_{1}^{l}, \lambda_{2}\left(\theta_{2}^{e}\right), \theta_{2}^{e}\right), R L\left(\lambda_{1}\left(\theta_{1}^{e}\right), \theta_{1}^{e}, \lambda_{2}^{e}, \theta_{2}^{l}\right)$ for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{i}^{e}, \in\left\{\theta_{i}^{l}, \theta_{i}^{u}\right\}$ |
| $L$ or $R$ | $\mathcal{P}\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right)\right), \mathcal{P}\left(\lambda_{1}^{e}, \theta_{1}^{e}, \lambda_{2}\left(\lambda_{1}^{e}, \theta_{1}^{e}\right), \theta_{2}\left(\lambda_{1}^{e}, \theta_{1}^{e}\right)\right), \mathcal{P}\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \theta_{2}^{e}\right), \lambda_{2}\left(\lambda_{1}^{e}, \theta_{2}^{e}\right), \theta_{2}^{e}\right)$, $\mathcal{P}\left(\lambda_{1}\left(\lambda_{2}^{e}, \theta_{2}^{e}\right), \theta_{1}\left(\lambda_{2}^{e}, \theta_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}^{e}\right), \mathcal{P}\left(\lambda_{1}\left(\theta_{1}^{e}, \lambda_{2}^{e}\right), \theta_{1}^{e}, \lambda_{2}^{e}, \theta_{2}\left(\theta_{1}^{e}, \lambda_{2}^{e}\right)\right), \mathcal{P}\left(\lambda_{1}\left(\theta_{1}^{e}, \theta_{2}^{e}\right), \theta_{1}^{e}, \lambda_{2}\left(\theta_{1}^{e}, \theta_{2}^{e}\right), \theta_{2}^{e}\right)$, for $\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{i}^{e}, \in\left\{\hat{\theta}_{i}^{l}, \theta_{i}^{u}\right\}$ |
| $S$ | $\begin{aligned} & S\left(\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right)\right), S\left(\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right), \lambda_{2}^{*}, \theta_{2}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right)\right), S\left(\left(\lambda_{1}^{*}, \theta_{1}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), \lambda_{2}^{e}, \theta_{2}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right)\right)\right.\right.\right. \\ & S\left(\left(\lambda_{1}^{e}, \theta_{1}\left(\lambda_{1}^{e}, \theta_{2}^{e}\right), \lambda_{2}\left(\lambda_{1}^{e}, \theta_{2}^{e}\right), \theta_{2}^{e}\right), S\left(\left(\lambda_{1}\left(\theta_{1}^{e}, \lambda_{2}^{e}\right), \theta_{1}^{e}, \lambda_{2}^{e}, \theta_{2}\left(\theta_{1}^{e}, \lambda_{2}^{e},\right)\right)\right), \text { for } \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}, \theta_{i}^{e}, \in\left\{\theta_{i}^{l}, \theta_{i}^{e}\right\}\right. \\ & \hline \end{aligned}$ |

Let $\overline{\mathcal{P}}=\{L S L, R S R, R S L, L S R, L R L, R L R, L S, R S$, $S L, S R, L R, R L, L, R, S\}$ denote the set of all the Dubins path modes possible between two configurations. We denote the length of the path of a given Dubins type $\mathcal{P} \in \overline{\mathcal{P}}$ between an initial configuration, defined by $\left(\lambda_{1}, \theta_{1}\right)$, and a final configuration, defined by $\left(\lambda_{2}, \theta_{2}\right)$, as $l_{\mathcal{P}}\left(\lambda_{1}, \theta_{1}, \lambda_{2}, \theta_{2}\right)$. Let $l_{\mathcal{D}}\left(\lambda_{1}, \theta_{1}, \lambda_{2}, \theta_{2}\right):=\min _{\mathcal{P} \in \overline{\mathcal{P}}} l_{\mathcal{P}}\left(\lambda_{1}, \theta_{1}, \lambda_{2}, \theta_{2}\right)$. The Dubins Gate Problem (DGP) can be re-stated as follows:

$$
\begin{aligned}
& \min _{\lambda_{1}, \lambda_{2}, \theta_{1}, \theta_{2}} l_{\mathcal{D}}\left(\lambda_{1}, \theta_{1}, \lambda_{2}, \theta_{2}\right) \\
& \text { subject to } \lambda_{1}, \lambda_{2} \in[0,1], \theta_{1} \in\left[\theta_{1}^{l}, \theta_{1}^{u}\right], \theta_{2} \in\left[\theta_{2}^{l}, \theta_{2}^{u}\right] .
\end{aligned}
$$

For a given $\lambda_{1}$ and $\lambda_{2}$, the DGP reduces to the Dubins Interval Problem (DIP), the solution of which must be one of the candidate paths presented in Section III. To solve DGP, we consider each candidate path for DIP and optimize over $\lambda_{1} \in[0,1]$ and $\lambda_{2} \in[0,1]$. We will now present the main results for each of these candidate paths; the proofs of all the Lemmas are in the appendix.

## A. Three segment paths

Broadly all the three segment paths can be categorized as either a $C S C$ or a $C C C$ path where $C$ stands for the circular arc turning left $(L)$ or right $(R)$.

1) CSC Path: Let $\lambda_{1}^{*}$ correspond to $p_{1}^{*} \in \overline{A B}$ such that the $S$ segment in the $C S C$ path from $\left(p_{1}^{*}, \theta_{1}\right)$ to $\left(p_{2}, \theta_{2}\right)$ is perpendicular to $\overline{A B}$. The length of such path is denoted as $l_{C S C}\left(\lambda_{1}^{*}, \lambda_{2}\right)^{8}$, if such a path doesn't exist, we set $l_{C S C}\left(\lambda_{1}^{*}, \lambda_{2}\right)$ to $\infty$. For this category, note that the headings

[^7]$\theta_{1}$ and $\theta_{2}$ are given, and therefore, we do not state the length, $l_{C S C}$, as a function of the headings also. Similarly, let $\lambda_{2}^{*}$ correspond to $p_{2}^{*} \in \overline{C D}$ such that the $S$ segment in the $C S C$ path from $\left(p_{1}, \theta_{1}\right)$ to $\left(p_{2}^{*}, \theta_{2}\right)$ is perpendicular to $\overline{C D}$.

## Lemma 1.

$\min _{\lambda_{1}, \lambda_{2} \in[0,1]} l_{C S C}\left(\lambda_{1}, \lambda_{2}\right)=\min \left\{l_{C S C}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), l_{C S C}\right.$ $\left.\left.\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), l_{C S C}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right)\right\}, \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}\right\}$.
2) CCC Path:

## Lemma 2.

$\min _{\lambda_{1}, \lambda_{2} \in[0,1]} l_{C C C}\left(\lambda_{1}, \lambda_{2}\right)=\min \left\{l_{C C C}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), \lambda_{1}^{e}, \lambda_{2}^{e} \in\right.$ $\{0,1\}\}$.

## B. Two Segment Paths

In this section, we analyze the two-segment paths $C S, S C$, and $C C$. For a given $p_{1}\left(\right.$ or $\left.\lambda_{1}\right)$ and $\theta_{1}$, the final heading of any two-segment path, $\theta_{2}$, is a function of $p_{2}$ (or $\lambda_{2}$ ), and cannot be independently chosen. Similarly, for a given $p_{2}$ and $\theta_{2}$, the initial heading $\theta_{1}$ is a function of $p_{1}\left(\right.$ or $\left.\lambda_{1}\right)$. Let $p_{i}$ be the inflection point on the two-segment path.

1) $C S$ or $C C$ : We consider the $C S$ or $C C$ paths where $\theta_{1}$ is given and $\theta_{2}$ can lie in the interval $\left[\theta_{2}^{l}, \theta_{2}^{u}\right]$. For a given $\lambda_{1}$, let $\lambda_{2}^{*}$ represent $p_{2}^{*} \in \overline{C D}$, that corresponds to a final position of a $C S$ path, such that $\overline{p_{i} p_{2}^{*}}$ is perpendicular to $\overline{C D}$; let the length of such $C S$ path be $l_{C S}\left(\lambda_{1}, \lambda_{2}^{*}\right)$. Similarly, for a given $\lambda_{2}, l_{C S}\left(\lambda_{1}^{*}, \lambda_{2}\right)$ is the length of a $C S$ path, where $\overline{p_{i} p_{2}}$ is perpendicular to $\overline{A B}$. Let $l_{C S}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ be the length of the $C S$ path where $\overline{p_{i}, p_{2}^{*}}$ is perpendicular to both $\overline{A B}$ and $\overline{C D}$; such a path exists only when $\overline{A B}$ and $\overline{C D}$ are parallel. Moreover, the length, $l_{C S}\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$, would be same as $l_{C S}\left(\lambda_{1}^{*}, \lambda_{2}\right)$ or $l_{C S}\left(\lambda_{1}, \lambda_{2}^{*}\right)$.

Let $\lambda_{2}^{l}$ (or $\lambda_{2}^{u}$ ) correspond to the position $p_{2}^{l} \in \overline{C D}$ (or $p_{2}^{u}$ ), such that the final heading, $\theta_{2}\left(\lambda_{2}^{l}\right)$ (or $\theta_{2}\left(\lambda_{2}^{u}\right)$ ), is equal to $\theta_{2}^{l}$ (or $\theta_{2}^{u}$ ). The definitions for the $C C$ paths are similar to that of the $C S$ paths.

Lemma 3. For $\mathcal{P} \in\{C S, C C\}, \min _{\lambda_{1}, \lambda_{2} \in[0,1]} l_{\mathcal{P}}\left(\lambda_{1}, \lambda_{2}\right)=$ $\min \left\{l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), l_{\mathcal{P}}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right), l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{l}\right)\right.$,
$\left.l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{u}\right), \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}\right\}$.
2) $S C$ or $C C$ : We consider the $S C$ paths where $\theta_{2}$ is given and $\theta_{1}$ can lie in the interval $\left[\theta_{1}^{l}, \theta_{1}^{u}\right]$. The definition of the critical and boundary points is similar to that of the $C S$ paths with few differences. For a given $\lambda_{2}, l_{S C}\left(\lambda_{1}^{*}, \lambda_{2}\right)$ is the length of a $S C$ path, where $\overline{p_{1} p_{i}}$ is perpendicular to $\overline{A B}$. For a given $\lambda_{1}, l_{S C}\left(\lambda_{1}, \lambda_{2}^{*}\right)$ is the length of a $S C$ path, where $\overline{p_{1} p_{i}}$ is perpendicular to $\overline{C D}$.

Let $\lambda_{1}^{l}$ (or $\lambda_{1}^{u}$ ) correspond to the position $p_{1}^{l} \in \overline{A B}$ (or $p_{1}^{u}$ ), such that the initial heading, $\theta_{1}\left(\lambda_{1}^{l}\right)$ (or $\theta_{1}\left(\lambda_{1}^{u}\right)$ ), is equal to $\theta_{1}^{l}$ (or $\theta_{1}^{u}$ ). The definitions for the $C C$ paths are similar to that of the $S C$ paths.

Lemma 4. For $\mathcal{P} \in\{S C, C C\}, \min _{\lambda_{1}, \lambda_{2} \in[0,1]} l_{\mathcal{P}}\left(\lambda_{1}, \lambda_{2}\right)=$ $\min \left\{l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), l_{\mathcal{P}}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right), l_{\mathcal{P}}\left(\lambda_{1}^{l}, \lambda_{2}^{e}\right)\right.$, $\left.l_{\mathcal{P}}\left(\lambda_{1}^{u}, \lambda_{2}^{e}\right), \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}\right\}$.

## C. One Segment Paths (C or S)

The one segment turns ( $L$ or $R$ ) are candidate solutions for DIP only when the turn angle is greater than $\pi$. We consider such paths here, and minimize over $\lambda_{1}$ and $\lambda_{2}$. The definitions of the boundary positions, $\lambda_{i}^{l}, \lambda_{i}^{u}, i=1,2$, are similar to the boundary positions defined for the $C S$ or $S C$ paths.

Lemma 5. For $\mathcal{P} \in\{L, R\}, \min _{\lambda_{1}, \lambda_{2} \in[0,1]} l_{\mathcal{P}}\left(\lambda_{1}, \lambda_{2}\right)=$ $\min \left\{l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{l}\right), l_{\mathcal{P}}\left(\lambda_{1}^{e}, \lambda_{2}^{u}\right), l_{\mathcal{P}}\left(\lambda_{1}^{l}, \lambda_{2}^{e}\right)\right.$, $\left.l_{\mathcal{P}}\left(\lambda_{1}^{u}, \lambda_{2}^{e}\right), \lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}\right\}$.

Consider the paths that have just one straight line segment; for a given position $p_{1}\left(\lambda_{1}\right)$, let $\lambda_{2}^{*}$ correspond to a position $p_{2}$, such that the straight line segment is perpendicular to $\overline{C D}$. For a given $\lambda_{2}, \lambda_{1}^{*}$ is similarly defined.

Lemma 6.
$\min _{\lambda_{1}, \lambda_{2} \in[0,1]} l_{S}\left(\lambda_{1}, \lambda_{2}\right)=\min \left\{l_{S}\left(\lambda_{1}^{e}, \lambda_{2}^{e}\right), l_{S}\left(\lambda_{1}^{e}, \lambda_{2}^{*}\right)\right.$, $l_{S}\left(\lambda_{1}^{*}, \lambda_{2}^{e}\right), l_{S}\left(\lambda_{1}^{e}, \lambda_{2}^{l}\right), l_{S}\left(\lambda_{1}^{e}, \lambda_{2}^{u}\right), l_{S}\left(\lambda_{1}^{l}, \lambda_{2}^{e}\right), l_{S}\left(\lambda_{1}^{u}, \lambda_{2}^{e}\right)$, $\left.\lambda_{1}^{e}, \lambda_{2}^{e} \in\{0,1\}\right\}$.

## D. Candidate Paths for the Dubins Gate Problem

The candidate paths for finding the optimum of the Dubins Gate Problem are listed in the Table I.

## VI. Numerical Results

We generated a set of thirty maps, ten each with 10,15 and 20 obstacles. The obstacles are randomly generated convex polygons and discs in an area of dimensions $16 \times 9$ units of distance. We set the Euclidean distance between the initial and final configurations to be 16 units. Also, the heading angle at


Fig. 10: Comparison of the paths generated by the lower and upper bounding algorithms for an instance with polygonal obstacles.
the initial and final configurations were chosen ${ }^{9}$ to be $90^{\circ}$ for all the instances except for the ones where the heading angles are varied.

The upper bounds for the CSP were computed using the Open Motion Planning Library (OMPL) [27]. A Dubins State Space was defined, and the feasible solutions were generated using RRT* [18], BIT* [19], and FMT* [20] algorithms. A computational time limit of 10 minutes was set for all the algorithms. We used the best feasible solution generated using these algorithms and its length is set as the upper bound $\left(l_{U B}\right)$ for the CSP problem. The best trivial lower bound $\left(l_{L B}\right)$ was obtained by choosing the maximum of lengths of the two

[^8]TABLE II: Performance of $\mathrm{G}^{*}$ with varying $\rho$

| Obstacles | Radius <br> $(\rho)$ | Trivial LB <br> $\left(l_{L B}\right)$ | \% Improvement of G* <br> Avg. |  | Max |  | Optimality Gap w.r.t. $l_{L B}$ | Optimality Gap w.r.t. $l_{G *}$ <br> Avg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 18.456 | 0.753 | 8.349 | 2.947 | 22.937 | 1.935 | 13.402 |
|  | 2 | 19.886 | 8.846 | 24.604 | 18.394 | 51.439 | 10.429 | 51.536 |
|  | 3 | 22.386 | 23.264 | 57.395 | 46.278 | 62.287 | 14.698 | 65.213 |
| 15 | 1 | 18.456 | 2.660 | 19.405 | 8.264 | 24.890 | 2.825 | 7.443 |
|  | 2 | 19.886 | 18.946 | 47.558 | 28.365 | 56.259 | 12.890 | 38.283 |
|  | 3 | 22.386 | 38.826 | 58.297 | 54.294 | 69.698 | 13.457 | 44.936 |
| 20 | 1 | 18.456 | 8.425 | 18.917 | 12.450 | 28.258 | 4.583 | 9.789 |
|  | 2 | 19.886 | 25.647 | 51.890 | 42.896 | 62.846 | 14.697 | 54.670 |
|  | 3 | 22.386 | 44.637 | 58.294 | 62.485 | 69.256 | 16.738 | 48.286 |

paths obtained by 1) solving the CSP without the obstacles (provides the Dubins bound), and 2) solving the CSP ignoring the turning radius constraints as discussed in the introduction (provides the Euclidean bound).
$\mathrm{G}^{*}$ was implemented in Python 3.6. Similar to the other algorithms, the computational time limit of $\mathrm{G}^{*}$ was also set to 10 minutes. All computations were conducted on a computer with a 2.80 GHz Intel Core i7-7700HQ processor running Ubuntu 16.04. An illustration of the paths generated by the lower bounding algorithms, $\mathrm{G}^{*}$, and the best upper bounding solution (from RRT*, $\mathrm{BIT}^{*}$, $\mathrm{FMT}^{*}$ ) using one of the maps are shown in Fig. 10a and Fig. 10b Here, the paths were computed for an instance with ten obstacles and with turning radius $\rho=1$ and $\rho=2$.

To evaluate the performance of $\mathrm{G}^{*}$, we vary the minimum turning radius of the robot $(\rho=1,2,3)$, the three tolerances ( $\tau_{i}=0.1,0.2,0.3, \tau_{p}=0.1,0.2,0.3, \tau_{\theta}=15^{\circ}, 30^{\circ}, 45^{\circ}$ ) as well as the initial and final heading angles of the robots on all the 30 maps. Finally, we also present the performance of $\mathrm{G}^{*}$ on the instances discussed in the introduction (Fig. 2].

## A. Impact of the minimum turning radius ( $\rho$ )

For a given number of obstacles and $\rho$ (referred to as case), we tested the algorithm on 10 maps. Each instance corresponds to one of the maps, and a value assigned to each of the tolerances. Since we have three different tolerances ( $\tau_{i}, \tau_{p}, \tau_{\theta}$ ) and three values for each tolerance, for each case, the algorithms were tested on a total of 270 instances. For each case, the average and maximum of the bounds obtained are presented in Table $\Pi$ Note that the trivial bound $\left(l_{L B}\right)$ for each case is independent of the tolerances, and therefore there is only one value. As expected, as $\rho$ increased, the average \% improvement of $\mathrm{G}^{*}$ bounds with respect to $l_{L B}$ increased from $0.75 \%$ to $44.63 \%$. A maximum improvement of $58.29 \%$ was observed for instances with 20 obstacles and $\rho=3$. This improvement in the lower bounds has a direct impact on our understanding of the quality of the feasible solutions; specifically, in Table $I$, we can compare the optimality gaps with respect to (w.r.t.) $l_{L B}$ versus the optimality gaps w.r.t. $l_{G *}$. For example, for maps with 15 obstacles and $\rho=3$, the optimality gap w.r.t. $l_{G *}$ improved to $13.45 \%$ on an average as compared to $54.29 \%$ w.r.t the $l_{L B}$.

Fig. 11 presents the reduction in the optimality gap due to $\mathrm{G}^{*}$. The case denoted as " $o 10 \_r 1$ " corresponds to a map with


Fig. 11: Improvement of the optimality gap by the $G^{*}$ bounds.


Fig. 12: A plot comparing the percentage split of instances (set of 270) based on their $\mathrm{G}^{*}$ lower bound improvements.

10 obstacles and $\rho=1$. This format of the case name applies to the other cases as well. The optimality gap with respect to the trivial lower bound is scaled to $100 \%$, and the reduction in the gap due to the $\mathrm{G}^{*}$ bounds and the remaining gap is shown in blue and orange respectively. The gap between the lower

TABLE III: Performance of G* with varying $\tau_{i}$

| Obstacles | Intersection <br> Tolerance | Trivial LB <br> $\left(l_{L B}\right)$ | \% Improvement of $\mathbf{G}^{*}$ <br> Avg. |  | Optimality Gap w.r.t. $l_{L B}$ |  | Optimality Gap w.r.t. $l_{G *}$ <br> Avg. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE IV: Performance of $\mathrm{G}^{*}$ with varying $\tau_{p}$

| Obstacles | Position <br> Tolerance | Trivial LB <br> $\left(l_{L B}\right)$ | \% Improvement of G* |  | Optimality Gap w.r.t. $l_{L B}$ |  | Optimality Gap w.r.t. $l_{G *}$ <br> Avg. | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE V: Performance of $\mathrm{G}^{*}$ with varying $\tau_{\theta}$

| Obstacles | Angle <br> Tolerance | Trivial LB <br> $\left(l_{L B}\right)$ | $\%$ Improvement of $\mathbf{G}^{*}$ |  | Optimality <br> Avg. |  | Max w.r.t. $l_{L B}$ | Optimality Gap w.r.t. $l_{G *}$ <br> Avg. |  | Max. | Avg. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\tau_{\theta}=15^{\circ}$ | 18.429 | 15.893 | 54.235 | 27.593 | 72.349 | 11.239 | 45.274 |  |  |  |  |
|  | $\tau_{\theta}=30^{\circ}$ | 18.429 | 15.893 | 54.235 | 27.593 | 72.349 | 11.239 | 45.274 |  |  |  |  |
|  | $\tau_{\theta}=45^{\circ}$ | 18.429 | 15.893 | 54.235 | 27.593 | 72.349 | 11.239 | 45.274 |  |  |  |  |
| 15 | $\tau_{\theta}=15^{\circ}$ | 18.278 | 15.933 | 58.927 | 30.428 | 79.766 | 11.395 | 48.594 |  |  |  |  |
|  | $\tau_{\theta}=30^{\circ}$ | 18.278 | 15.933 | 58.927 | 30.428 | 79.766 | 11.395 | 48.594 |  |  |  |  |
|  | $\tau_{\theta}=45^{\circ}$ | 18.278 | 15.933 | 58.927 | 30.428 | 79.766 | 11.395 | 48.594 |  |  |  |  |
| 20 | $\tau_{\theta}=15^{\circ}$ | 19.303 | 14.923 | 61.589 | 40.589 | 78.350 | 12.350 | 56.467 |  |  |  |  |
|  | $\tau_{\theta}=30^{\circ}$ | 19.303 | 14.923 | 61.589 | 40.589 | 78.350 | 12.350 | 56.467 |  |  |  |  |
|  | $\tau_{\theta}=45^{\circ}$ | 19.303 | 14.923 | 61.589 | 40.589 | 78.350 | 12.350 | 56.467 |  |  |  |  |

TABLE VI: Performance of $\mathrm{G}^{*}$ with varying initial/final heading angles

| Heading $(\theta)$ | Obstacles | Trivial LB <br> $\left(l_{L B}\right)$ | \% Improvement of G* <br> Avg. |  | Optimality Gap w.r.t. $l_{L B}$ <br> Max. |  | Optimality Gap w.r.t. $l_{G *}$ <br> Avg. | Avg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16.098 | 3.124 | 52.846 | 18.350 | 68.348 | 22.395 | 41.374 |
|  | 15 | 16.106 | 3.259 | 54.388 | 26.457 | 68.239 | 24.587 | 64.234 |
|  | 20 | 16.129 | 3.294 | 58.982 | 39.275 | 76.399 | 34.584 | 76.436 |
| $\frac{\pi}{2}$ | 10 | 18.237 | 15.346 | 62.439 | 29.383 | 74.982 | 12.439 | 48.240 |
|  | 15 | 18.497 | 15.683 | 61.237 | 32.349 | 76.498 | 12.985 | 43.249 |
|  | 20 | 18.840 | 15.824 | 63.987 | 39.235 | 77.386 | 13.239 | 58.242 |
| $\pi$ | 10 | 28.240 | 3.835 | 25.289 | 8.240 | 36.486 | 5.399 | 6.223 |
|  | 15 | 28.458 | 3.392 | 25.399 | 12.346 | 37.985 | 8.499 | 16.244 |
|  | 20 | 28.430 | 3.554 | 25.987 | 12.784 | 38.595 | 8.350 | 14.387 |
| $\frac{3 \pi}{2}$ | 10 | 18.937 | 24.239 | 84.235 | 38.395 | 88.346 | 7.346 | 28.364 |
|  | 15 | 18.958 | 24.275 | 84.797 | 42.345 | 88.837 | 9.456 | 26.236 |
|  | 20 | 19.064 | 24.336 | 84.679 | 41.785 | 89.397 | 9.973 | 34.235 |

and the upper bounds is reduced by $45-75 \%$ in most cases (except for the $o 10 \_r 1$ and $o 15 \_r 1$ cases). That is due to the fact that these cases consists of relatively easier instances, and the gap with respect to the trivial lower bound itself is quite low.

Fig. 12 captures the distribution of instances for different ranges of percent gap reduction. The optimality gap reduction
by $\mathrm{G}^{*}$ bounds for most instances of the case o10_r1 were under $10 \%$. However, for instances with a higher number of obstacles and larger turning radii, we observe a significantly higher reduction in the gap.


Fig. 13: Comparison of position tolerance $\left(\tau_{p}\right)$ on $\mathrm{G}^{*}$ bounds on an instance with 10 obstacles for $\rho=1$.


Fig. 14: A comparison of different bounds against $G^{*}$ bound for 30 instances. Each instance is generated on a map with dimensions 16 units $\times 9$ units and has 10 or 15 or 20 obstacles. The minimum turning radius of the vehicle is set to 3 units.

## B. Impact of the tolerances

The bounds obtained by varying the obstacle intersection tolerance $\left(\tau_{i}\right)$, the position continuity tolerance $\left(\tau_{p}\right)$, and the angle continuity tolerance $\left(\tau_{\theta}\right)$ are presented in the Tables IIII IV and V respectively. The values of $\tau_{i}, \tau_{p}$, and $\tau_{\theta}$ are set to $0.2,0.2$ and $15^{\circ}$ respectively, whenever that particular tolerance is not varied. In general, we can observe a trend that the gap between upper bound and the $\mathrm{G}^{*}$ bounds are the lowest when the tolerances are the lowest. This is expected as $\mathrm{G}^{*}$ bounds tend to get closer to the upper bound as $\tau_{i}, \tau_{p}, \tau_{\theta}$ gets smaller. An illustration of how $\tau_{p}$ affects the lower bounding paths found by $\mathrm{G}^{*}$ is shown in Fig. 13 .

## C. Impact of the initial and final heading angles

We set the initial and final heading angle to be equal to $\theta$, and chose four values $\left(0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right)$ for $\theta$. Other parameters were chosen as follows: $\rho=2, \tau_{i}=0.2, \tau_{p}=0.2, \tau_{\theta}=15^{\circ}$.

The performance of $\mathrm{G}^{*}$ for different values of $\theta$ are shown in Table VI The reduction in the optimality gap was the highest when $\theta=\frac{3 \pi}{2}$ and lowest when $\theta=0$. These differences are likely a result of the distribution and the shapes of the obstacles with respect to the initial and final configurations.

## D. $G^{*}$ Bounds for the instances presented in Fig. 2

For the instances in Fig. 2, we used the following parameters: $\rho=3, \tau_{i}=0.2, \tau_{p}=0.2, \tau_{\theta}=15^{\circ}$. Bounds obtained using $\mathrm{G}^{*}$ along with others are presented in Fig. 14 These results suggest $\mathrm{G}^{*}$ can provide significant improvement over the existing lower bounding approaches. Also, in Fig. [15, we plot the convergence of the upper and lower bounds for a specific instance as a function of the running time of the algorithms. Clearly, the upper bounds (generated by asymptotically optimal algorithms) continue to decrease while the bounds generated by $\mathrm{G}^{*}$ continue to increase with respect to the computational time.


Fig. 15: A comparison of $\mathrm{G}^{*}$ bound and Upper Bound convergence for a runtime of 10 minutes. The instance under consideration is generated on a map with dimensions 16 units $\times 9$ units and has 15 obstacles. The minimum turning radius of the vehicle is set to 2 units.

## VII. CONCLUSION

We presented $\mathrm{G}^{*}$ that computes lower bounds to the CSP problem in the presence of a general class of obstacles. $G^{*}$ relies on optimally solving a new motion planning problem called the Dubins Gate problem (DGP). We find optimal solutions for the DGP and prove that the cost of the solution produced by $\mathrm{G}^{*}$ is a lower bound to the CSP problem. Extensive numerical results were also presented to corroborate the performance of $\mathrm{G}^{*}$.
$\mathrm{G}^{*}$ can be extended and generalized in several ways. If there is no computational time limit and the tolerances converge to zero, we would first like to show that the bounds produced by $\mathrm{G}^{*}$ also converge to the optimum of the CSP problem. Another aspect is that the gates generated in this article correspond to vertical line segments, and only the forward connecting edges between the gates are added. This approach may not be suitable for maps such as mazes where the obstacles can intersect the boundaries of the map. This could be addressed by generalizing the gate generation process using cues from road-maps. Another future direction could be in constructing feasible paths for the CSP problem based on the lower bounding solutions, and showing approximation bounds.

## Acknowledgment

This material is based upon work partially supported by the National Science Foundation under Grant No. 2120219. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

## REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. USA: Kluwer Academic Publishers, 1991.
[2] J. T. SCHWARTZ and M. SHARIR, 'CHAPTER 8 - Algorithmic Motion Planning in Robotics" in Algorithms and Complexity (J. VAN LEEUWEN, ed.), Handbook of Theoretical Computer Science, pp. 391430, Amsterdam: Elsevier, 1990.
[3] D. Halperin, L. E. Kavraki, and J.-C. Latombe, "Robotics," in Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O'Rourke, eds.), ch. 48, pp. 1065-1093, Boca Raton, FL: CRC Press LLC, 2004.
[4] J.-P. Laumond, "Finding collision-free smooth trajectories for a nonholonomic mobile robot," in Proceedings of the 10th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'87, (San Francisco, CA, USA), p. 1120-1123, Morgan Kaufmann Publishers Inc., 1987.
[5] J.-P. Laumond, P. Jacobs, M. Taix, and R. Murray, 'A motion planner for nonholonomic mobile robots'" IEEE Transactions on Robotics and Automation vol. 10, no. 5, pp. 577-593, 1994.
[6] G. Wilfong, 'Shortest paths for autonomous vehicles'" in Proceedings, 1989 International Conference on Robotics and Automation, pp. 15-20 vol.1, 1989.
[7] J.-D. Boissonnat, A. Cérézo, and J. Leblond, 'Shortest paths of bounded curvature in the plane," Journal of Intelligent and Robotic Systems. vol. 11, no. 1-2, pp. 5-20, 1994.
[8] J. Sellen, 'Planning paths of minimal curvature', in Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1976-1982 vol.2, 1995.
[9] J.-D. Boissonnat and S. Lazard, 'A Polynomial-Time Algorithm for Computing a Shortest Path of Bounded Curvature amidst Moderate Obstacles (Extended Abstract)." in Proceedings of the Twelfth Annual Symposium on Computational Geometry, SCG '96, (New York, NY, USA), p. 242-251, Association for Computing Machinery, 1996.
[10] S. Fortune and G. Wilfong, 'Planning Constrained Motion'" in Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC '88, (New York, NY, USA), p. 445-459, Association for Computing Machinery, 1988.
[11] J. Reif and H. Wang, 'The Complexity of the Two Dimensional Curvature-Constrained Shortest-Path Problem" in Robotics: The Algorithmic Perspective (M. T. M. Pankaj K. Agarwal, Lydia E. Kavraki, ed.), Third International Workshop on Algorithmic Foundations of Robotics (WAFR98), pp. 49-57, Houston, Texas: A. K. Peters Ltd, 1998.
[12] J. Backer and D. Kirkpatrick, 'A Complete Approximation Algorithm for Shortest Bounded-Curvature Paths" in Algorithms and Computation (S.-H. Hong, H. Nagamochi, and T. Fukunaga, eds.), (Berlin, Heidelberg), pp. 628-643, Springer Berlin Heidelberg, 2008.
[13] P. K. Agarwal, P. Raghavan, and H. Tamaki, "Motion planning for a steering-constrained robot through moderate obstacles," in Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, STOC '95, (New York, NY, USA), p. 343-352, Association for Computing Machinery, 1995.
[14] L. E. Dubins, 'On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents" American Journal of Mathematics, vol. 79, no. 3, pp. 497-516, 1957.
[15] P. Jacobs and J. Canny, 'Planning smooth paths for mobile robots'' in Proceedings, 1989 International Conference on Robotics and Automation, pp. 2-7 vol.1, 1989.
[16] H. Wang and P. K. Agarwal, Approximation Algorithms for CurvatureConstrained Shortest Paths" in Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '96, (USA), p. 409-418, Society for Industrial and Applied Mathematics, 1996.
[17] P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides, 'Curvature-Constrained Shortest Paths in a Convex Polygon (Extended Abstract)" in Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG '98, (New York, NY, USA), p. 392-401, Association for Computing Machinery, 1998.
[18] S. Karaman and E. Frazzoli, 'Sampling-based algorithms for optimal motion planning" The international journal of robotics research, vol. 30, no. 7, pp. 846-894, 2011.
[19] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, 'Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search" The International Journal of Robotics Research, vol. 39, no. 5, pp. 543567, 2020.
[20] L. Janson, E. Schmerling, A. Clark, and M. Pavone, ‘Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions" The International journal of robotics research, vol. 34, no. 7, pp. 883-921, 2015.
[21] P. Maini and P. B. Sujit, 'Path planning for a UAV with kinematic constraints in the presence of polygonal obstacles" in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 62-67, 2016.
[22] M. Naazare, D. Ramos, J. Wildt, and D. Schulz, 'Application of graphbased path planning for uavs to avoid restricted areas" in 2019 IEEE international symposium on safety, security, and rescue robotics (SSRR), pp. 139-144, IEEE, 2019.
[23] S. G. Manyam and S. Rathinam, 'On tightly bounding the Dubins traveling salesman's optimum'" Journal of Dynamic Systems, Measurement and Control vol. 140, no. 7, p. 071013, 2018.
[24] P. Vána and J. Faigl, 'Optimal Solution of the Generalized Dubins Interval Problem" in Robotics: Science and Systems, 2018.
[25] S. G. Manyam, S. Rathinam, D. Casbeer, and E. Garcia, 'Tightly bounding the shortest Dubins paths through a sequence of points" Journal of Intelligent \& Robotic Systems $\mid$ vol. 88, no. 2, pp. 495-511, 2017.
[26] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.
[27] I. A. Şucan, M. Moll, and L. E. Kavraki, "The Open Motion Planning Library," IEEE Robotics \& Automation Magazine, vol. 19, pp. 72-82, December 2012. https://ompl.kavrakilab.org

## Appendix

Notation: $\mu(S)=1$, if $S$ is true, $\mu(S)=-1$, if $S$ is false.

## A. Proof of Lemma 1



Fig. 16: Dubins CSC paths

Proof: We only prove this lemma for the $L S L$ and $L S R$ paths. Due to the symmetry, the proofs for $R S R$ and $R S L$ paths follow similarly. Without loss of generality, we
assume the initial heading is 0 with respect to $x$-axis. Let the vectors $v_{1}$ and $v_{2}$ be defined as the following (refer to Fig. 16): $v^{1}:=B-A$ and $v^{2}:=D-C$. Let $C_{1}$ and $C_{2}$ be the centers of the first and last segments in the $C S C$ path.

Case $L S L$ : For an $L S L$ path, the centers are given as $C_{1}=\left(A_{x}+\lambda_{1} v_{x}^{1}, A_{y}+\lambda_{1} v_{y}^{1}+\rho\right)$ and $C_{2}=\left(C_{x}+\lambda_{2} v_{x}^{2}-\right.$ $\left.\rho \sin \theta_{2}, C_{y}+\lambda_{2} v_{y}^{2}+\rho \cos \theta_{2}\right)$. Let $l_{x}(\lambda)$ and $l_{y}(\lambda)$ denote the projections of the $S$ segment in the $L S L$ path along the $x$ axis and $y$-axis respectively (Fig. 16a. Note that $l_{x}\left(\lambda_{1}, \lambda_{2}\right)=$ $A_{x}+\lambda_{1} v_{x}^{1}-C_{x}-\lambda_{2} v_{x}^{2}+\rho \sin \theta_{2}$ and $l_{y}\left(\lambda_{1}, \lambda_{2}\right)=A_{y}+\lambda_{1} v_{y}^{1}+$ $\rho-C_{y}-\lambda_{2} v_{y}^{2}-\rho \cos \theta_{2}{ }^{10}$. The length of the $S$ segment is given as $l_{S}\left(\lambda_{1}, \lambda_{2}\right)=\sqrt{l_{x}^{2}+l_{y}^{2}}$.

Now, $l_{L S L}\left(\lambda_{1}, \lambda_{2}\right)=l_{S}(\lambda)+\rho\left(\phi_{1}\left(\lambda_{1}, \lambda_{2}\right)+\phi_{2}\left(\lambda_{1}, \lambda_{2}\right)\right)$. Since $\phi_{1}\left(\lambda_{1}, \lambda_{2}\right)+\phi_{2}\left(\lambda_{1}, \lambda_{2}\right)=\theta_{2}, l_{L S L}=l_{S}\left(\lambda_{1}, \lambda_{2}\right)+$ $\rho \theta_{2}$. Therefore, the minimum of $l_{L S L}$ for $\lambda_{1}, \lambda_{2} \in[0,1]$ may occur at the boundary points or at a local minimum where $\frac{d}{d \lambda_{i}} l_{L S L}\left(\lambda_{1}, \lambda_{2}\right)=\frac{d}{d \lambda_{i}} l_{S}\left(\lambda_{1}, \lambda_{2}\right)=0$. Differentiating $l_{S}$ with respect to $\lambda_{i}$ and simplifying the resulting expression, we get,

$$
\frac{d}{d \lambda_{i}} l_{s}=\frac{1}{l_{s}}\left(v_{i}^{x} l_{x}+v_{i}^{y} l_{y}\right),
$$

Therefore, $\frac{d}{d \lambda_{i}} l_{S}=0$ implies that $v_{i}^{x} l_{x}+v_{i}^{y} l_{y}=0$, i.e., the straight line segment in the $L S L$ path is perpendicular to $\overline{A B}$ for $i=1$, or the straight line segment in the $L S L$ path is perpendicular to $\overline{C D}$ for $i=2$.

Case LSR: The centers corresponding to the $L$ and the $R$ segments of the $L S R$ path are given as follows: $C_{1}=\left(A_{x}+\right.$ $\left.\lambda_{1} v_{x}^{1}, A_{y}+\lambda_{1} v_{y}^{1}+\rho\right)$ and $C_{2}=\left(C_{x}+\lambda_{2} v_{x}^{2}+\rho \sin \theta_{2}, C_{y}+\right.$ $\left.\lambda_{2} v_{y}^{2}-\rho \cos \theta_{2}\right)$. The quantities $l_{x}$ and $l_{y}$, shown in Fig. 16b are defined as, $l_{x}:=A_{x}-C_{x}+\lambda_{1} v_{x}^{1}-\lambda_{2} v_{x}^{2}-\rho \sin \theta_{2}$ and $l_{y}:=$ $A_{y}-C_{y}+\lambda_{1} v_{y}^{1}-\lambda_{2} v_{y}^{2}+\rho+\rho \cos \theta_{2}$. The length of the straight line segment, $l_{S}=\sqrt{l_{x}^{2}+l_{y}^{2}-4 \rho^{2}}$. The quantities $\psi_{1}$ and $\psi_{2}$, shown in in Fig. 16b are given as following: $\psi_{1}=\arctan \left(\frac{l_{y}}{l_{x}}\right)$ and $\psi_{2}=\arctan \left(\frac{2 p}{l_{S}}\right)$. Since $\phi_{1}+\phi_{2}=2\left(\psi_{1}+\psi_{2}\right)-\theta_{2}$, the derivative of the length of the path is given as below,

$$
\frac{\partial}{\partial \lambda_{i}} l_{L S R}=\frac{\partial}{\partial \lambda_{i}} l_{S}+2 \rho \frac{\partial}{\partial \lambda_{i}}\left(\psi_{1}+\psi_{2}\right) .
$$

Differentiating $l_{S}, \psi_{1}$ and $\psi_{2}$ with respect to $\lambda_{i}$, we get

$$
\begin{align*}
\frac{\partial}{\partial \lambda_{i}} l_{S} & =\mu(i=1)\left(l_{x} v_{x}^{i}+l_{y} v_{y}^{i}\right)  \tag{1}\\
\frac{\partial}{\partial \lambda_{i}} \psi_{1} & =\mu(i=1) \frac{l_{x} v_{y}^{i}-l_{y} v_{x}^{i}}{l_{x}^{2}+l_{y}^{2}}  \tag{2}\\
\frac{\partial}{\partial \lambda_{i}} \psi_{2} & =-\mu(i=1) \frac{2 \rho\left(l_{x} v_{x}^{i}+l_{y} v_{y}^{i}\right)}{\left(l_{x}^{2}+l_{y}^{2}\right) l_{S}} \tag{3}
\end{align*}
$$

This derivative of the length $l_{L S R}$ is obtained as

$$
\begin{equation*}
\frac{\partial}{\partial \lambda_{i}} l_{L S R}=\mu(i=1)\left[v_{x}^{i} \cos \phi_{1}+v_{y}^{i} \sin \phi_{1}\right] . \tag{4}
\end{equation*}
$$

${ }^{10}$ For simplicity, in some places, we write $l_{x}, l_{y}$ instead of $l_{x}\left(\lambda_{1}, \lambda_{2}\right), l_{y}\left(\lambda_{1}, \lambda_{2}\right)$.

Clearly, $\frac{\partial}{\partial \lambda_{i}} l_{L S R}=0$ when the straight line segment in the $L S R$ path is perpendicular to $\overline{A B}$ for $i=1$, or the straight line segment in the $L S R$ path is perpendicular to $\overline{C D}$ for $i=2$.

## B. Proof of Lemma 2



Fig. 17: Dubins LRL path
Proof: We prove this result for the $L R L$ path, and the proof for the $R L R$ path follows similarly, due to symmetry. The minimum of $l_{L R L}$ with respect to $\lambda_{1}$ or $\lambda_{2}$ should occur at a local minima or at the boundary points. We show the local extrema is always a maximum. Without loss of generality, we assume the starting heading as 0 . The centers $C_{1}$ and $C_{3}$ of the $L$ segments in the $L R L$ path (refer to Fig. 17) are $\left(A_{x}+\right.$ $\left.\lambda_{1} v_{x}^{1}, A_{y}+\lambda_{1} v_{y}^{1}+\rho\right)$ and $\left(C_{x}+\lambda_{2} v_{x}^{2}-\rho \sin \theta_{2}, C_{y}+\lambda_{2} v_{y}^{2}+\right.$ $\left.\rho \cos \theta_{2}\right)$. Let $l_{x}$ and $l_{y}$ be the projections of $\overline{C_{1} C_{3}}$ on $x$-axis and $y$-axis respectively, and are given as $l_{x}=A_{x}+\lambda_{1} v_{x}^{1}-$ $C_{x}-\lambda_{2} v_{x}^{2}+\rho \sin \theta_{2}$ and $l_{y}=A_{y}+\lambda_{1} v_{y}^{1}+\rho-C_{y}-\lambda_{2} v_{y}^{2}-$ $\rho \cos \theta_{2}$. The length of $\overline{C_{1} C_{3}}, l_{c c}:=\sqrt{l_{x}^{2}+l_{y}^{2}}$. We know that $\phi_{1}+\phi_{2}+\phi_{3}=\theta_{2}-\theta_{1}+2 \phi_{2}$, and $\phi_{2}=2 \psi_{1}+\pi$. The length of the path, $l_{L R L}=\rho\left(4 \psi_{1}+2 \pi+\theta_{2}\right)$, and its derivative, $\frac{\partial}{\partial \lambda_{i}} l_{L R L}=4 \rho \frac{\partial}{\partial \lambda_{i}} \psi_{1}$. The quantity $\psi_{1}$ is given by $\arccos \left(\frac{l_{c c}}{4 \rho}\right)$, where $l_{c c}=\sqrt{l_{x}^{2}+l_{y}^{2}}$, and thus we get the derivatives of $l_{L R L}$ as the following:

$$
\begin{aligned}
\frac{\partial}{\partial \lambda_{i}} l_{L R L}= & -\frac{4 \rho}{\sqrt{16 \rho^{2}-l_{c c}^{2}}} \frac{1}{l_{c c}}\left(v_{x}^{i} l_{x}+v_{y}^{i} l_{y}\right), \\
\frac{\partial^{2}}{\partial \lambda_{i}^{2}} l_{L R L}= & \frac{\partial}{\partial \lambda_{i}}\left(-\frac{4 \rho}{l_{c c} \sqrt{16 \rho^{2}-l_{c c}^{2}}}\right)\left(v_{x}^{i} l_{x}+v_{y}^{i} l_{y}\right) \\
& -\frac{4 \rho}{l_{c c} \sqrt{16 \rho^{2}-l_{c c}^{2}}}\left(v_{x}^{i}{ }^{2}+v_{y}^{i^{2}}\right) .
\end{aligned}
$$

At the local extrema $v_{x}^{i} l_{x}+v_{y}^{i} l_{y}=0$, and therefore $\frac{\partial^{2}}{\partial \lambda^{2}} l_{L R L}=$ $-\frac{4 \rho}{l_{c c} \sqrt{16 \rho^{2}-l_{c c}^{2}}}\left(v_{x}^{i}{ }^{2}+v_{y}^{i^{2}}\right) \stackrel{<}{<}$; i.e., the local extremum is always a maximum.

## C. Proof of Lemma 3

We prove this lemma for the $L S$ and $L R$ paths, and the proofs for $R S$ and $R L$ paths follows similarly.


Fig. 18: Dubins two-segment paths with initial heading given, the final heading depends on the initial and final positions.

Case LS: Without loss of generality, we assume $\theta_{1}$ is 0 . The final heading is a function of $\lambda_{1}$ and $\lambda_{2}$, and it cannot be chosen independently. The start and end points of the $L S$ path (refer to Fig. 18a) are $p_{1}=A+\lambda_{1} v^{1}$ and $p_{2}=C+$ $\lambda_{2} v^{2}$, respectively. We get the following equations from the projections of $\overline{p_{1} p_{2}}$ on $x$ and $y$ axes:

$$
\begin{aligned}
& \rho \sin \phi_{1}+l_{S} \cos \phi_{1}=C_{x}+\lambda_{2} v_{x}^{2}-A_{x}-\lambda_{1} v_{x}^{1} \\
& \rho-\rho \cos \phi_{1}+l_{S} \sin \phi_{1}=C_{y}+\lambda_{2} v_{y}^{2}-A_{y}-\lambda_{1} v_{y}^{1}
\end{aligned}
$$

Differentiating with respect to $\lambda_{i}$, we get,

$$
\begin{aligned}
& \rho \cos \phi_{1} \frac{\partial \phi_{1}}{\partial \lambda_{i}}+\frac{\partial l_{S}}{\partial \lambda_{i}} \cos \phi_{1}-l_{S} \sin \phi_{1} \frac{\partial \phi_{1}}{\partial \lambda_{i}}=\mu(i=2) v_{x}^{i} \\
& \rho \sin \phi_{1} \frac{\partial \phi_{1}}{\partial \lambda_{i}}+\frac{\partial l_{S}}{\partial \lambda_{i}} \sin \phi_{1}+l_{S} \cos \phi_{1} \frac{\partial \phi_{1}}{\partial \lambda_{i}}=\mu(i=2) v_{y}^{i} .
\end{aligned}
$$

Using the above equations, we get $\frac{\partial l_{L S}}{\partial \lambda_{i}}=\rho \frac{\partial \phi_{1}}{\partial \lambda_{i}}+\frac{\partial l_{S}}{\partial \lambda_{i}}=$ $v_{x}^{i} \cos \phi_{1}+v_{y}^{i} \sin \phi_{1}$. At the local minima, $v_{x}^{i} \cos \phi_{1}+$ $v_{y}^{i} \sin \phi_{1}=0$, which implies the straight line segment in the $L S$ path is perpendicular to $\overline{A B}$ for $i=1$ or the straight line segment in the $L S$ path is perpendicular to $\overline{C D}$ for $i=2$.

Case $L R$ : The initial and final points are defined similar to the $L S$ path. We get the following equations from the projections of $\overline{p_{1} p_{2}}$ :

$$
\begin{aligned}
2 \rho \cos \left(\frac{\phi_{1}-\pi}{2}\right)+\rho \cos \left(\frac{\pi}{2}+\theta_{2}\right) & =C_{x}+\lambda_{2} v_{x}^{2}-A_{x}-\lambda_{1} v_{x}^{1} \\
2 \rho \sin \left(\phi_{1}-\frac{\pi}{2}\right)+\rho \sin \left(\frac{\pi}{2}+\theta_{2}\right) & =C_{y}+\lambda_{2} v_{y}^{2}-A_{y}-\lambda_{1} v_{y}^{1}
\end{aligned}
$$

$$
-\rho
$$

Differentiating the above with respect to $\lambda_{i}$, we get,

$$
\begin{aligned}
& 2 \rho \cos \phi_{1} \frac{\partial \phi_{1}}{\partial \lambda_{i}}-\rho \cos \theta_{2} \frac{\partial \theta_{2}}{\partial \lambda_{i}}=\mu(i=2) v_{x}^{i} \\
& 2 \rho \sin \phi_{1} \frac{\partial \phi_{1}}{\partial \lambda_{i}}-\rho \sin \theta_{2} \frac{\partial \theta_{2}}{\partial \lambda_{i}}=\mu(i=2) v_{y}^{i}
\end{aligned}
$$

The length of the $L R$ paths is $l_{L R}=\rho\left(\phi_{1}+\phi_{2}\right)=\rho\left(2 \phi_{1}-\theta_{2}\right)$. Using the above equations, we obtain the partial derivative of $l_{L R}$ as given below,

$$
\begin{aligned}
& \frac{\partial l_{L R}}{\partial \lambda_{i}}=\mu(i=2) \frac{v_{x}^{i} \sin \theta_{2}-v_{y}^{i} \cos \theta_{2}-v_{x}^{i} \sin \phi_{1}+v_{y}^{i} \cos \phi_{1}}{\sin \left(\theta_{2}-\phi_{1}\right)}, \\
& =2 \mu(i=2) \frac{\sin \left(\frac{\theta_{2}-\phi_{1}}{2}\right)\left[v_{x}^{i} \cos \left(\frac{\theta_{2}+\phi_{1}}{2}\right)+v_{y}^{i} \sin \left(\frac{\theta_{2}+\phi_{1}}{2}\right)\right]}{\sin \left(\theta_{2}-\phi_{1}\right)}
\end{aligned}
$$

At the extremum, $\frac{\partial l_{L R}}{\partial \lambda_{i}}=0$. This could happen if $\theta_{2}=\phi_{1}$, which essentially means the second arc in $L R$ path vanishes, and therefore is a degenerate case. Therefore, $v_{x}^{i} \cos \left(\frac{\theta_{2}+\phi_{1}}{2}\right)+$ $v_{y}^{i} \sin \left(\frac{\theta_{2}+\phi_{1}}{2}\right)=0$, implying that $\overline{p_{1} p_{2}}$ is perpendicular to $\overline{A B}$ for $i=1$, or $\overline{p_{1} p_{2}}$ is perpendicular to $\overline{C D}$ for $i=2$.

## D. Proof of Lemma 4



Fig. 19: Dubins two segment path $S L$.
The path $S L$ with the final heading given is a reflection of the path $L S$ with the initial heading given, and therefore the local extrema is similar to that of the $L S$ path, which occurs when the straight line segment is perpendicular to $\overline{A B}$ or $\overline{C D}$.


[^0]:    ${ }^{1}$ A configuration is defined by a location and orientation (or heading angle) of the robot on a 2 D plane.

[^1]:    ${ }^{2} \mathrm{An}$ obstacle is defined as moderate if it is convex and its boundary is a differential curve whose radius of curvature is everywhere at least equal to 1 .

[^2]:    ${ }^{3}$ Measures the deviation of a feasible solution from a lower bound.

[^3]:    ${ }^{4}$ The approach presented in this paper is generic and can be extended to other shapes.

[^4]:    ${ }^{5}$ This gate construction procedure in $\mathrm{G}^{*}$ doesn't impose any restriction on the location of the obstacles; certainly, obstacles can lie anywhere. We used this approach to make the graph construction in $\mathrm{G}^{*}$ simpler. Ideally, we would like to allow for all the gates, and also have back edges going from gates with larger $x$ coordinates to gates with smaller $x$ coordinates. If we add all the gates and allow back edges, we certainly expect the bounds to get better.

[^5]:    ${ }^{6}$ Note that some of these paths may not be feasible (may not satisfy the heading angle constraints) and, therefore, can be ignored.

[^6]:    ${ }^{7}$ In this paper, we initialize each line segment with three sectors.

[^7]:    ${ }^{8}$ For simplicity, $l_{C S C}$ is not explicitly shown as a function of $\theta_{1}$ and $\theta_{2}$.

[^8]:    ${ }^{9}$ We note here that the initial (or the final) configuration can be set to any angle. We chose instances with initial and final configurations set to $90^{\circ}$ as we found these instances to be harder to solve in our preliminary tests. $\mathrm{G}^{*}$ works for any initial and final configuration, and these configurations do not have to equal.

