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Abstract—Volumetric maps are widely used in robotics due to
their desirable properties in applications such as path planning,
exploration, and manipulation. Constant advances in mapping
technologies are needed to keep up with the improvements
in sensor technology, generating increasingly vast amounts of
precise measurements. Handling this data in a computationally
and memory-efficient manner is paramount to representing the
environment at the desired scales and resolutions. In this work,
we express the desirable properties of a volumetric mapping
framework through the lens of multi-resolution analysis. This
shows that wavelets are a natural foundation for hierarchical
and multi-resolution volumetric mapping. Based on this insight
we design an efficient mapping system that uses wavelet de-
composition. The efficiency of the system enables the use of
uncertainty-aware sensor models, improving the quality of the
maps. Experiments on both synthetic and real-world data provide
mapping accuracy and runtime performance comparisons with
state-of-the-art methods on both RGB-D and 3D LiDAR data.
The framework is open-sourced to allow the robotics community
at large to explore this approach.

I. INTRODUCTION

As robots move from tightly controlled spaces into our ev-
eryday lives, there is a growing need for them to autonomously
navigate and work in increasingly large, unstructured, and
unknown environments. For reliable deployments and robust
operation over extended periods of time, robots need to build
and maintain their representation of the world using only
onboard sensing and computing. Doing this in a timely manner
on compute restricted devices using sensors producing large
amounts of data is a continual challenge in robotics.

Dense geometric environment representations are widely
used to facilitate tasks ranging from navigation to inspection
and manipulation, while also serving as building blocks for
other representations. Robotics is a particularly challenging
field for such representations, due to the demands placed on
systems with limited computational resources. For example,
building a map of an unknown environment while localizing
in it with Simultaneous Localization And Mapping (SLAM)
requires the ability to update the map incrementally at inter-
active rates. To support high-level tasks such as exploration
and navigation the representation must also differentiate be-
tween unknown space and observed (free or occupied) space.
Finally, the map must be able to model arbitrary geometry
with sufficient accuracy to guarantee safety when unexpected
environmental structures or objects are encountered.

Volumetric map representations can be updated incremen-
tally and explicitly represent unknown space. Furthermore,
if a sufficiently high resolution is chosen, they can also

Fig. 1. A reconstruction created by our proposed hierarchical volumetric
mapping framework, wavemap, highlighting its ability to accurately capture
fine objects while also efficiently compressing free space as shown by the
adaptive resolution along the transparent slice.

represent object surfaces and unknown space boundaries of ar-
bitrary topology. Beyond robotics, volumetric representations
are commonly used in 3D reconstruction, reality capture, and
augmented reality applications. However, a major drawback of
volumetric representations is that their memory usage in naive
implementations grows linearly with the observed volume and
cubically with the chosen resolution. Several research efforts
propose to use multi-resolution representations, often based on
trees, and demonstrate significant improvements. In this work,
we extend these efforts by approaching the problem from a
formal signal processing and data compression perspective.
Specifically, we propose to use wavelet compression to obtain
a hierarchical volumetric representation. Using Haar wavelets
we achieve state of the art lossless compression performance,
while also allowing simple yet efficient updates and queries.
This is achieved by compressing the occupancy information
using a Haar wavelet decomposition and storing the individual
decomposition components in a hierarchical data structure.
The wavelet transform’s linearity makes it possible to per-
form measurement updates directly in the map’s compressed
representation. Furthermore, when performing map updates we
know that all resolution levels of the map are always up to
date and in a valid state due to the Haar basis’ orthogonality
property. This obviates the need to perform maintenance
operations or manual compression passes that are typically
seen in other multi-resolution mapping frameworks.



Another trade-off made by many existing volumetric map-
ping methods is the reliance on simplified measurement mod-
els to achieve real-time update rates. A common approach
is to use discrete occupancy updates, that systematically in-
flate obstacles and do not allow for surfaces to be recon-
structed with sub-voxel accuracy. Measurement models based
on Truncated Signed Distance Functions (TSDFs) overcome
the latter limitation but use a projective distance heuristic.
Such approaches have a hard time reconstructing thin objects
such as branches, cables, or fences. Furthermore, the implied
assumption of infinitely thin rays, underlying these observation
models, leads to aliasing artifacts in regions where the ray
density is low compared to the voxel resolution. In addition to
negatively affecting the reconstruction quality, the resulting
high entropy regions are hard to compress. Besides allevi-
ating the challenges mentioned above, modeling soft beams
provides an opportunity to incorporate angular uncertainties
from sensor calibration and pose estimation into the volumetric
reconstruction process. Thanks to the computational benefits
of the Haar wavelet representation we can adopt a continuous
occupancy measurement model, accounting for angular and
range uncertainty, inspired by the work of [16].

In order to process data at sensor rate we introduce a
specialized measurement integration algorithm that exploits
a hierarchical measurement update approach with the infor-
mation provided by the map itself. The proposed algorithm
speeds up measurement integration while guaranteeing that
the results are identical to a naive integrator applying the same
measurement updates at the highest resolution throughout the
field of view.

In summary, the main contribution of this paper is a
volumetric mapping system that uses:

• A wavelet-based hierarchical representation, that is guar-
anteed to keep the hierarchy consistent at all times;

• A continuous occupancy measurement model accounting
for range and angular uncertainties;

• A highly-efficient coarse-to-fine measurement integrator
that adapts to the observed structure;

The proposed framework is extensively evaluated on synthetic
and real-world datasets with comparisons to several state-of-
the-art methods. The results demonstrate that our approach
is memory efficient yet produces high-quality maps, all while
being computationally efficient. The entire framework is open-
sourced1 to enable the robotics community to build on these
results.

II. RELATED WORK

A. Map model

Two approaches are commonly used to represent maps
in robotics [3], sparse feature-based maps and dense maps.
The first category uses sparse sets of distinctive features
[21, 31] and excels at representing large environments but
struggles to model the connectivity of surfaces and distinguish
between free and unknown space. This makes it ideal for

1https://github.com/ethz-asl/wavemap

large scale mapping and localization tasks, but limits its use
for manipulation, motion planning, and exploration tasks. The
second paradigm uses a large number of geometric elements,
such as as points [8, 28], surfels [1, 12, 26, 32, 38], or meshes
[37] to model observed obstacles. Voxels, discretizing the
space into squares or cubes of fixed size, are another common
geometric primitive used to model both occupancy [7, 13] and
signed distance information [4, 14, 15, 25].

B. Measurement model

Approximations of the sensor’s physical operation have
been widely explored. Early approaches modeled uncertainties
of the sensors explicitly [7]. Other approaches aim to achieve
specific map properties, such as sharp map boundaries [16].
However, when building 3D maps using precise sensors the
computational cost incurred by these sensor models moti-
vated the development of simpler ray-based models. These
models treat observations as thin rays tracing through the
world [13, 25]. Machine-learning based methods exploit more
complex relationships, such as inverse rendering [9, 19] or
beam-to-beam interactions [24].

C. Map storage

The most common way to store volumetric maps is to
discretize the space using a voxelgrid, i.e. a regular grid with
fixed size voxels. In the beginning grids with a single fixed res-
olution [7, 14] were used, but over time spatial data structures,
such as hashed voxel blocks [23], trees [13], or hybrids thereof
[36] were adopted. These structures fit the observed volume
more tightly, can grow dynamically, and improve runtime. To
model expansive maps with varying levels of detail, multi-
resolution maps [6, 11, 13, 34, 35] are widely used due
to being memory efficient and capable of adapting to the
needed resolution. Many multi-resolution representations are
also hierarchical, allowing users to query the map at varying
resolutions [11, 13]. Taking a signal processing perspective on
compact map storage leads to the use of wavelet transforms
[40], which are inherently multi-resolution and hierarchical,
or the discrete cosine transform [29]. Recent learning-based
methods, such as NERF [19] or occupancy prediction networks
[18, 27], take a different approach and learn the coefficients
of a neural network that predicts map information at arbitrary
coordinates.

D. Map updates

The manner in which maps are updated with new obser-
vations is crucial for the efficiency and map quality. Early
volumetric frameworks evaluated the measurement model for
all voxels in the observed volume [7, 14]. This was improved
by tracing rays from the sensor’s center to each measured point
and updating the voxels that are intersected by the ray [13, 25].
Advances in sensor technology, enabling high resolution maps
spurred further efficiency improvements, such as ray-tracers
that bundle [25] or sub-sample [6, 20] similar rays, or rate limit
voxel updates [20]. While efficient, these integrators can pro-
duce “holes” in the map depending on the sensor’s ray density.

https://github.com/ethz-asl/wavemap


This motivates the use of projective integrators which avoid
this problem by interpolating the depth image [4, 16]. Other
approaches to avoid resolution-related issues include multi-
resolution integrators, ray-tracing [6] or projective [35], which
reduce the update resolution with distance, as well as methods
analyzing the measurement update regularity [10, 11]. While
efficient, hierarchical volumetric maps require maintenance to
keep the information in the different levels coherent. Octomap
[13] employs a fine-to-coarse scheme, integrating measure-
ments at the finest resolution and synchronizing coarser levels
in a maintenance pass. Supereight [11, 35] performs multi-
resolution updates and synchronizes the remaining levels using
an upward and downward propagation scheme.

In contrast to others, our volumetric ray-tracing method uses
a wavelet decomposition-based representation which implicitly
synchronizes all hierarchy levels at once. Additionally, unlike
most ray-tracing methods we use a continuous sensor model,
taking angular uncertainty into account, to improve map
accuracy.

III. MULTI-RESOLUTION ANALYSIS AND WAVELETS

Multi-resolution representations have been the subject of
intensive study by communities ranging from computer vision
[2] to physics and mathematics [5, 17]. Mallat and Meyer
formalized the expected properties of multi-resolution repre-
sentations as the Multi-Resolution Analysis (MRA) conditions
[17]. The full MRA conditions are summarized in appendix
A. In informal terms, they state that increasing the resolution
should only add detail and eventually make it possible to rep-
resent any signal. Two further requirements are self-similarity
in space and in scale. In a mapping context, these imply that
the map should behave the same regardless of our frame of
reference and choice of units.

A corollary of the fact that increasing the resolution only
adds information is that, in areas that are stored at multiple
resolutions, the lower resolutions do not carry any unique
information and storing them explicitly is redundant. This
motivates the use of wavelet decompositions, which allow us
to work with maps that form valid MRAs while only storing
and processing the differences between the resolution levels.
A given wavelet decomposition is characterized by its chosen
scaling function and complementary wavelet function. In this
work, we focus on the Haar wavelet and scaling function,
which form an orthogonal basis. A summary of orthogonal
wavelet bases is provided in appendix B. This orthogonality
is particularly beneficial because it guarantees that any given
volumetric map is characterized by a unique combination of
wavelet coefficients. Thus, there are no redundant coefficients
that can go out of sync and manually have to be updated after
integrating new measurements. Another interesting property
of Haar wavelets is that the basis resulting from its scaling
functions correspond to box functions arranged to span the
cells of a regular grid. Therefore, Haar decompositions can
represent anything a regular grid map can, while bringing
significant benefits in terms of compression and implicitly
maintaining the hierarchy’s consistency.

IV. METHOD

In the following, we describe the components of our ap-
proach. We first explain how the map’s occupancy posterior
can be efficiently updated in its compressed state, thanks to
the properties of the wavelet transform. Next, we derive our
continuous sensor model, which captures range and angular
uncertainties associated with the measurements. After that, we
derive an error bound which enables early stopping during the
coarse-to-fine observation integration process. Further perfor-
mance improvements are obtained by skipping updates that do
not change the state of the map. Finally, we illustrate how all
these pieces fit together with an algorithmic overview.

A. Measurement integration

In the following we will explain how the use of wavelets
enables efficient measurement integration. As each new beam
endpoint measurement z arrives, the map’s Bayesian occu-
pancy posterior p(mx|z1:t), estimated at each point x in the
map m, can incrementally be updated using

Lp(mx|z1:t) = Lp(mx|z1:t−1) + Ls(mx|zt), (1)

where s(mx|zt) is the sensor’s inverse measurement model
and the log-odds formulation, Lp = log p

1−p , is used to make
the update linear. As the wavelet transform W is also linear,
the update equation for all cells in the map becomes:

W (Lp(m|z1:t)) =W (Lp(m|z1:t−1))+W (Ls(m|zt)) . (2)

Therefore, once the compressed measurement update
W (Ls(m|zt)) is computed, the map can be updated directly
in wavelet space. This is avoids the costly process, employed
by other methods, of decompressing the map’s observed
area, applying the update, and compressing the map again.
Computing W (Ls(m|zt)) is efficient thanks to the Fast
Wavelet Transform (FWT) (Appendix C), which is typically
initialized by computing the orthogonal projection of the
original signal onto the scaling functions at a pre-determined
finest resolution.

Since the wavelet transform itself is lossless, the reconstruc-
tion error is fully determined by how well the initial FWT
projection approximates the original update. Most applications
use a constant finest resolution, but this is not mandatory.
Given that inverse sensor models tend to be smooth throughout
most of the observed volume, only raising the resolution
close to surfaces would improve efficiency and the maximum
achievable detail.

B. Measurement models

In order to derive multi-resolution sampling and integration
approaches, it is important that the chosen inverse mea-
surement model s(mx|zt) is well-defined at all points x in
the observed volume. We propose to extend the continuous
occupancy model introduced in [16] by modeling the angular
uncertainty of each measured beam, in addition to range
uncertainty. We model the probability of occupancy s(mx|z)
at a point x for a single beam z by correlating the probability
of occupancy given the beam’s true endpoint s̄(mx|z̄) with



the distribution of the true endpoint position given a noisy
observation o(z̄|z), i.e.:

s(mx|z) =
∫
S
s̄(mx|z̄)o(z̄|z)dz̄, (3)

where x, z̄, and z are expressed in sensor coordinate space
S, and the beam start point is at its origin. Extending [16] to
include angular uncertainty, we define s̄(mx|z̄) as

s̄(mx|z̄) = s̄(mx|z̄r, z̄θ)

=


0 xr < z̄r ∧ |xθ − z̄θ| ≤ τθ
1 z̄r ≤ xr ≤ z̄r + τr ∧ |xθ − z̄θ| ≤ τθ
1
2 otherwise

(4)

where τ is an assumed surface thickness parameter in sensor
coordinates, see Fig. 2a for a visualization. The subscript r
refers to the axis perpendicular to the sensor’s image plane,
whereas θ refers to the offset along the image plane2.

Our model assumes that the noise on the measurement beam
endpoint position is normally distributed in sensor coordinates,
as

o(z|z̄) ∼ N (z̄,Σ), (5)

where Σ is the measurement noise covariance matrix. If Σ is
diagonal and z̄ has a uniform prior, the r and θ components
are independent and eq. 5 can be simplified as follows:

o(z̄|z) = o(zr|z̄r)o(zθ|z̄θ) = N (z̄r, σr)N (z̄θ, σθ). (6)

We approximate the normal distributions with quadratic B-
splines, as in [16], such that o(z|z̄) ≃ q( z̄−z

σ ), where

q(t) =


1
16 (3 + t)2 −3 ≤ t ≤ −1
1
8 (3− t

2) −1 < t < 1
1
16 (3− t)

2 1 ≤ t ≤ 3

0 otherwise

. (7)

The distribution of the true beam endpoint position given a
noisy measurement (Fig. 2b) then becomes:

o(z̄|z) = q

(
zr − z̄r
σr

)
q

(
zθ − z̄θ
σθ

)
. (8)

As motivated in [16], we match the surface thicknesses to
half the width of their respective B-splines, i.e. τr = 3σr
and τθ = 3σθ. This ensures that the measurement model is
continuous and that Lp(mx|z1:t) converges to 0 if x lies on
an object’s surface.

After substituting 4 and 8 into 3, the full inverse measure-
ment model (Fig. 2c) becomes:

s(mx|z) =
∫ ∞

0

∫ ∞

−∞
s̄(mx|z̄r, z̄θ)q(v)q(w)dz̄θ dz̄r

=
1

2
+

(
Q(v)− Q(v − 3)

2
− 1

2

)(
Q(w+3)−Q(w−3)

)
,

(9)

2For pinhole camera projection models, r corresponds to the depth coor-
dinate and θ to the reprojection error. For spherical projection models, e.g.
certain LiDARs, r refers to the range coordinate and θ to the relative angle.

where Q(t) refers to the cumulative distribution of q(t), i.e.
the cubic B-splines resulting from Q(t) =

∫ t

−∞ q(u)du, and
v = zr−z̄r

σr
, w = zθ−z̄θ

σθ
.

For depth cameras, the depth uncertainty is often set as
σr(x) = κrx

2
r , where κr depends on the sensor setup and

post-processing algorithms. For laser-based sensors, the range
error is usually assumed to not vary with range, thus σr = κr
where κr is indicated on the sensor’s datasheet.

C. Worst-case update error bounds

From the MRA theory (Section III) we know that at some
point, integrating information at finer levels of the hierarchy
no longer improves the representation. Therefore, to fully
exploit the coarse-to-fine measurement integration scheme of
our method we need to know at what level of the hierarchy we
can stop integrating data. This requires determining, for each
point x, the resolution beyond which no further improvements
are possible, which we achieve by deriving a conservative
approximation error bound. As this work focuses on the
use of Haar wavelets, we can exploit a property unique to
them, namely that neighbors at the same resolution do not
overlap. This results in the leaves of our multi-resolution Haar
decomposition perfectly partitioning the original space into
non-overlapping cubes of varying sizes. Since Haar scaling
functions are constant over their support, the worst-case error
ϵmax within each space partition, or voxel, V is given by:

ϵmax(Ls(m, z),V) = max
x∈V
|Ls(mx′ , z)− Ls(mx, z)| , (10)

where x′ is the chosen sample point, which we set to be the
partition’s center.

Since ϵmax has to be evaluated millions of times per second
in practice, we simplify the computation by only considering
three cases based on the state of the space partition, defined
as follows:

update type(V, zt) =
FullyUnobserved ∀x ∈ V : Ls(mx|zt) = 0

PossiblyOccupied ∃x ∈ V : Ls(mx|zt) > 0

FreeOrUnobserved otherwise
(11)

Looking at Eq. 9 we can see that the gradient of s(mx|z)
is zero in FullyUnobserved areas and reaches local maxima
where xθ = zθ ± 3σθ or xr = zr as illustrated in Fig. 2d.
Using the fact that

∂s(mx|z)
∂xθ

∣∣∣∣
xθ=zθ±3σθ

=
3

16σθ
,

∂s(mx|z)
∂xr

∣∣∣∣
xr=zr

=
3

8σr
(12)

and assuming the worst-case orientations for a cube-shaped
partition V , i.e. its diagonal projected into sensor coordinates
r and θ aligns with either gradient, we obtain the following
bounds for the approximation error for the three cases:

ϵmax(V) =


0 FullyUnobserved

max
(

3Vhθ

16σθ
,
3Vhr

8σr

)
PossiblyOccupied

3Vhθ

16σθ
FreeOrUnobserved

(13)



(a) (b) (c) (d)

Fig. 2. Figure illustrating our proposed models for a) the occupancy given the true beam endpoint s̄(mx|z̄) (eq. 4), b) the position of the true endpoint given
a noisy measurement o(z̄|z) (eq. 8), c) the complete inverse measurement model s(mx|z) (eq. 9), and d) the local maxima used to derive the worst-case error
bounds. Values of 0.0, 0.5 and 1.0 are shown in white, grey and black, respectively. The true beam endpoint is indicated in red. Uncertainties are exaggerated
for illustration.

where Vh is the maximum distance a sample can have to V’s
center, namely half of V’s diagonal. Note that Vhθ

decays
quickly as the distance to the sensor increases.

D. Saturated region skipping

To preserve the ability to quickly adapt the map when
dynamic parts of the environment change, we impose upper
and lower bounds on the occupancy posterior Lp(mx|z1:t),
as proposed by Yguel et al. [41]. As observed by Hornung
et al. [13], this clamping policy also significantly improves
compression performance by encouraging the majority of the
map’s posterior to converge to constant values. Namely to the
lower bound in areas that are consistently observed as being
free, and to the upper bound in areas that are consistently
observed as being occupied. We propose to exploit this satu-
rating behavior further to reduce the computational cost of map
updates. Applying negative occupancy (free-space) updates in
areas where the posterior has already reached the lower bound
has no effect, as the updates are canceled out by the clamping
operation. Similarly, the posterior is not affected by skipping
positive occupancy updates in areas that already converged
to the upper bound. Skipping saturated regions leads to a
particularly high speedup if it can be done in a coarse-to-
fine manner, but doing so is only safe if the map’s lower
resolutions are always up to date. Both properties are met by
our representation and integration scheme. An algorithm that
interleaves saturated region skipping, adaptive sampling, and
thresholding will be discussed in the next section.

E. Algorithm and data structure

As described previously, Haar scaling functions do not over-
lap with their neighbors at the same resolution and perfectly
partition the space. The support of the scaling functions in a
multi-resolution Haar decomposition is, therefore, identical to
the hierarchical partitioning scheme of octrees. We can thus
store the wavelet coefficients in any optimized octree data
structure that allows data to be attached to both inner and
leaf nodes, such as supereight [34] or OpenVDB [22].

Leveraging the idea that increasing the resolution in MRAs
only adds information, our proposed adaptive multi-resolution
update algorithm determines the appropriate update resolution
for all points in the observed volume in a coarse-to-fine man-
ner (Section IV-C). The algorithm is initialized at the octree’s
root and recursively evaluates its children, as illustrated in
Algorithm 1. Each recursive call starts by checking which

of the three possible update cases, eq. 11, applies to the
current node’s partition V . If no parts of the partition have
been observed by the current measurement zt, or if saturated
region skipping applies, no updates are needed. Otherwise,
we continue by checking if the approximation error at the
partition’s current resolution is acceptable. If this is the case,
we evaluate the inverse measurement model s(mx′ |zt) at the
partition’s center and integrate the update into the map. If none
of the previous criteria were met, a higher resolution is needed
and the recursive function is called for each of the octree
node’s sub-divisions (octants). In practice, we also compress
the measurement update using the wavelet transform and need
to traverse the map’s data structure. Both of these operations
can efficiently be interleaved with the recursive adaptive sam-
pling procedure. Note that although the presented algorithm
is recursive, great flexibility exists for its implementation. For
example, since each Haar scaling function only overlaps with
its parent and children, all partitions at a given resolution and
their descendants can be updated in parallel.

V. EXPERIMENTS

We evaluate our approach on three different datasets, featur-
ing depth cameras and LiDARs, in indoor as well as outdoor
environments. Comparisons are presented to three state-of-the-
art volumetric mapping frameworks: octomap [13], voxblox
[25], and supereight2 [11]. Octomap and supereight2 are both
used in multi-resolution occupancy mapping-mode. Voxblox
only supports TSDFs mapping and is configured to use its
default ‘fast’ integration method. In terms of implementation
details, all approaches are evaluated using their publicly avail-
able reference implementations345 and wrapped with the same
code to process the training data.

For each dataset, we split the original data into training
and test sets by reserving every 20th observation for testing
and use the remaining frames for mapping. Test points are
generated by sampling points along all rays in each test
observation, with points along the beam being in free space
and the endpoint being occupied. To obtain insights into the
behavior of the different methods in various scenarios we
compute the distance of each free-space test point to the closest
surface point. This allows us to evaluate the performance

3https://github.com/OctoMap/octomap mapping
4https://bitbucket.org/smartroboticslab/supereight2
5https://github.com/ethz-asl/voxblox

https://github.com/OctoMap/octomap_mapping
https://bitbucket.org/smartroboticslab/supereight2
https://github.com/ethz-asl/voxblox


Algorithm 1: Wavemap recursive update

Input: Current measurement zt,
Previous map posterior p(m | z1:t−1),
Lower log-odds threshold Lmin,
Approximation error threshold ϵthresh,
Maximum resolution resmax,
Octree’s root partition Vroot

Output: Updated map posterior p(m | z1:t)
1 Function RecursiveAdaptiveUpdate(V, zt) is

// Use Eq.11 to skip partitions
2 update type← UpdateType(V, zt)
3 if update type == FullyUnobserved then
4 return
5 end
6 if (update type == FreeOrUnobserved
7 and Lp(mV | z1:t−1) ≤ Lmin) then
8 return
9 end

// Use Eq.13 to terminate early
10 ϵmax(V)← ApproximationError(V, zt)
11 if (Vres == resmax or ϵmax(V) < ϵthresh) then
12 Lp(mV | z1:t)← Lp(mV | z1:t−1)
13 +Ls(mV | zt)
14 return
15 end

// Otherwise, increase resolution
16 for Vchild ∈ V do
17 RecursiveAdaptiveUpdate(Vchild, zt)
18 end
19 end

// Initialize map and start recursion
20 p(m | z1:t)← p(m | z1:t−1)
21 RecursiveAdaptiveUpdate(Vroot, zt)

in different range bands, including: i) small negative values
assessing the ability to capture thin objects, ii) distances close
to zero to evaluate the surface reconstruction quality, and
iii) larger distances to obstacles to detect possible biases or
approximation errors. This approach also avoids diluting a
small number of challenging situations with a large number
of easy-to-classify free space observations.

For each experiment, we report the overall Area under the
ROC Curve (AUC) as a general indicator of classification
performance. By integrating the Receiver Operating Char-
acteristic (ROC) curve, the AUC quantifies how well each
classifier discriminates free and occupied space regardless of
the classification threshold. We also report the classification
accuracy for the individual range bands. Note that different
accuracies can be obtained based on the chosen classification
threshold. For this study, we set the thresholds for each
framework on each dataset to the value that maximizes the
difference between the True Positive Rate (TPR) and the False
Positive Rate (FPR), weighed equally.

TABLE I
AREA UNDER THE ROC CURVE RESULTS FOR BOTH DATASETS. HIGHER
IS BETTER. THE CORRESPONDING RESOURCE USAGES ARE IN TABLE II.

Dataset Res octomap super- voxblox ours ours
eight2 (rays) (beams)

Panoptic 5cm 0.95 0.93 0.99 0.99 0.99
Flat 2cm 0.99 0.95 1.00 1.00 1.00
Newer 20cm 0.82 0.87 0.92 0.91 0.91
College 5cm 0.90 0.89 0.97 0.94 0.97
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Fig. 3. Accuracy in function of the distance to the surface on the Panoptic
mapping dataset at different resolutions. Higher is better.

A. Accuracy evaluations

1) Panoptic mapping dataset: The first set of experiments is
conducted using “Run 1” of the panoptic mapping dataset [30],
which features depth camera recordings of a simulated studio
apartment including realistic household objects. Octomap and
voxblox do not support depth images directly, and hence the
dataset’s images were first converted to pointclouds using the
pinhole projection model used by both supereight2 and our
method. The camera poses were obtained from the ground
truth.

From the AUC values shown in Table I we can see that,
when using larger cell sizes, only our proposed method can
compete with voxblox. Being TSDF-based, voxblox can more
accurately reconstruct smooth surfaces which account for
large parts of the environment, giving it a distinct advantage.
The remaining two methods have worse overall performance.
When moving to a higher resolution the difference shrinks and
all methods perform comparably. Looking at the results shown
in Figure 3 we can clearly see where octomap and supereight2
accumulate their errors in the 5 cm resolution case. Octomap
struggles to properly localize the surface boundary, while
supereight2 is overly pessimistic, labeling cells far from the
surface as occupied. Finally, one can see the trade-off between
our method, using a beam-based model, and voxblox, using a
TSDF model. Voxblox has better at the surface reconstruction
performance while our approach is better at reconstructing thin
objects. This difference can also be seen in Figure 4 where the
chair is missing its legs in the voxblox reconstruction. Looking
at the 2 cm resolution case, all methods but supereight2 per-
form almost identically. Supereight2 still produces pessimistic
results, which likely stem from the approximations used to
achieve its impressive speed.



octomap supereight2 voxblox ours (beams)
Fig. 4. Qualitative reconstruction comparisons featuring detailed geometry on scenes of the Panoptic mapping (top) and Newer College (bottom) datasets,
both at 5cm resolution.

2) Newer College dataset: The second set of experiments
uses the Cloister sequence from Collection 2 in the Newer
College dataset [42]. This sequence was chosen because it
captures geometry with a wide range of scales including wide-
open outdoor spaces, indoor spaces with arches and sculptures,
and vegetation. Odometry estimates and undistorted point
clouds were obtained using FastLIO2 [39] processing the
Ouster OS0-128 IMU and point cloud data. The motion-
compensated point clouds were used for all frameworks except
supereight2, which operates using dense range images and
does not yet support motion-undistortion.

Looking at the AUC numbers in Table I we immediately
see that this real-world LiDAR dataset is more challenging
than the previous synthetic one. When using a coarse 20 cm
resolution octomap performs the worst, with voxblox and our
method achieving the best results, and supereight2 landing in
the middle. Moving to a higher resolution of 5 cm octomap and
supereight2 end up performing similar while voxblox slightly
outperforms our approach. However, the detailed results shown
in Figure 5 reveal interesting insights. At 20 cm resolution
octomap struggles to produce accurate surfaces. We also see
that our approach and supereight2 have similar performance
when it comes to reconstructing the surface but our approach
performs slightly better when classifying free space in the
vicinity of obstacles. Voxblox again performs the best in
surface reconstruction and free space classification, but suffers
in the thin object reconstruction domain. Moving to a finer
5 cm resolution the change is similar to that observed in the
Panoptic dataset. The accuracy of every method improves
and they move closer together, with supereight2 failing to
accurately predict free space close to surfaces. The differences
between the other three methods are characterized by octomap
not reconstructing thin objects accurately while both voxblox
and ours (beams) perform equally well.

3) Sensor model ablation: To verify the benefit of the
more costly uncertainty aware sensor model proposed in
Section IV-B, we conduct an ablation comparing our proposed
sensor model, ours (beams), with one that disregards angular
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Fig. 5. Accuracy in function of the distance to the surface on the Newer
College dataset at different resolutions. Higher is better.

uncertainty, ours (rays). As the Panoptic Flat dataset contains
no noise on observation or pose there is, as to be expected,
no difference between the two models. On the Newer College
dataset, however, there are visible differences. In the coarse
setting the proposed uncertainty-aware model improves the
ability to reconstruct thin objects. Moving to the higher
resolution case both the ability to reconstruct surfaces and thin
objects are significantly improved by our proposed model.

These accuracy evaluations showed several things. The
proposed method ours (beams) compares favorably to the other
three methods. Despite the natural advantage voxblox has in
surface reconstruction tasks, being a TSDF-based method, our
approach performs on par while having superior performance
in thin object reconstruction. The uncertainty-aware sensor
model also improves the quality of the map close to surfaces
and when dealing with thin surfaces, allowing the reconstruc-
tion of objects that other methods can’t capture when using
the same cell size.

B. Efficiency evaluations

We evaluate the memory usage as well as the runtime
of our method in comparison to the three baseline methods.
Memory usage is reported as the amount of RAM used by the
method as well as the memory used by the map data structure.



While our framework can be implemented using various data
structures, we used octomap’s octree implementation to keep
the comparison as fair as possible. The runtime is reported as
the elapsed wall time and the cumulative CPU time across all
threads, allowing a fair comparison between single-threaded
and multi-threaded methods. All frameworks have their visu-
alizations disabled and all experiments are performed on the
same desktop computer with an Intel i9-9900K CPU.

From the numbers shown in Table II we can see that
supereight2 ranks first in terms of wall time on the depth
camera dataset, and second best for LiDAR. However, the
memory usage of its maps is relatively large owing to the fact
that it estimates occupancy using weighted averaging instead
of log-odds updates (requiring 2 floats per cell instead of 1)
and focuses its implementation primarily on speed. Voxblox,
as to be expected from a TSDF-based method, has the largest
map sizes at higher resolutions but is computationally effi-
cient. Octomap produces large maps, in comparison to our
method, and is the slowest of all compared methods by an
order of magnitude. Octomap’s significant slowdown at high
resolutions is caused by the fine-to-coarse model employed
by their integrator which needs to touch every single cell. Our
proposed method obtains maps that are significantly smaller
than those of octomap despite using the same underlying data
structure.

The runtime of our method, when looking at the CPU
time, is equal or better than that of supereight2. However,
as supereight2’s implementation uses multiple threads the
real-world performance of it is still better. The difference in
runtime and memory usage between our method and octomap
clearly shows the benefits of using wavelets to represent
the map as it enables good compression and allows the use
of an efficient coarse-to-fine integrator capable of skipping
unnecessary work.

Comparing the memory and runtime of ours (rays) and
ours (beams) we can see that the price for the improved
quality is larger maps by about 30% to 70% depending on the
resolution and an increase in runtime of around 50%. These
increases stem from the fact that the uncertainty-aware model
needs to update more voxels and that the map contains more
fine details and voxels with partial occupancy values. Overall,
our proposed method shows good general performance in
both memory usage and runtime, with clear avenues for
improvements. The wall time could be reduced significantly
using multi-threading, which is easily achievable due to the
independence of the voxel updates. Moreover, we believe
the memory used to store the map itself could be reduced
further by using a more efficient data structure such as the
one proposed by OpenVDB [22]. These extensions will be
added to the open-source code.

C. Multi-sensor multi-resolution mapping

One key advantage of our framework is its natural ability
to handle multiple sensors at different resolutions. In this
experiment, we show qualitative results of our mapping frame-
work running in multi-sensor mode on the DARPA SubT

TABLE II
COMPUTATIONAL RESOURCE USAGE AT DIFFERENT RESOLUTIONS.

LOWER IS BETTER.

Memory (MB) Time (s)
Dataset Res Framework RAM Map only CPU time Wall time

Panop.
Flat

5cm

octomap 162.35 6.50 130.32 129.00
supereight2 158.23 46.09 27.79 4.76
voxblox 229.96 36.90 58.58 10.68
ours (rays) 135.69 4.17 5.58 6.78
ours (beams) 130.04 5.65 6.94 7.20

2cm

octomap 6202.39 50.94 773.16 763.39
supereight2 448.38 285.07 50.83 9.32
voxblox 663.53 348.15 244.69 24.61
ours (rays) 343.26 39.09 33.00 34.80
ours (beams) 294.58 67.81 57.56 57.51

Newer
Coll.

20cm

octomap 203.25 20.78 688.71 709.99
supereight2 249.03 107.79 411.67 67.14
voxblox 261.02 66.32 228.12 48.07
ours (rays) 180.86 6.94 87.39 88.78
ours (beams) 138.92 8.82 107.67 113.26

5cm

octomap 14404.76 981.02 36252.70 35790.60
supereight2 2926.42 2333.93 2853.12 404.19
voxblox 3718.85 2362.58 1788.90 162.36
ours (rays) 1192.95 241.84 1656.26 1671.58
ours (beams) 1065.21 402.18 2085.05 2083.61

Fig. 6. Example of our framework performing multi-sensor, multi-resolution
volumetric mapping on the DARPA SubT Finals dataset, combining data from
2 ground-facing LiDARs at 2cm resolution (left) and 1 horizontal LiDAR at
16cm resolution up to a range of 30m (center) into a single map (right).

Finals dataset [33]. In Figure 6 we show the output of our
framework simultaneously integrating two Robosense Bpearl
dome-LiDAR sensors and one Velodyne VLP-16 LiDAR. The
Bpearls were angled to scan the ground around the robot
while the VLP-16 was providing long-range observations.
As the sensors provide information for different purposes
we integrate them with different resolutions into the map.
The Bpearls, responsible for local terrain mapping to enable
navigation of a quadruped, are integrated at 2 cm resolution.
At the same time the VLP-16, responsible for long-range
mapping and exploration, is integrated with a resolution of
at most 16 cm. This results in a unified map, that supports
both local trajectory planning as well as global exploration
goal placements, without wasting resources on high-accuracy
map reconstruction in areas where it is not needed. While
shown here for multiple LiDAR sensors the same approach
can be used for mobile manipulation setups using a 3D LiDAR
for navigation and RGB-D cameras for scene reconstruction,
resulting in a map that supports both navigation as well as
manipulation.

VI. CONCLUSION

In this work, we introduced wavemap, a hierarchical volu-
metric mapping framework inspired by multi-resolution anal-
ysis. The MRA theory guarantees that using wavelet decom-
position, we can safely and very efficiently integrate new



observations in a coarse-to-fine manner. The resulting gains in
computational efficiency, together with early stopping criteria
for the integrator, allow us to use more complex sensor models
such as the proposed angular uncertainty-aware model. In
experiments on synthetic RGB-D and real-world 3D LiDAR
data, we demonstrate that our proposed method achieves high-
quality results while being efficient in terms of memory and
compute requirements. We also demonstrate how our method
can incorporate observations from multiple sensors into a
single map with per-sensor resolution. This allows the use of
a single map representation for tasks that would have required
several dedicated maps in the past. Finally, we open source the
implementation of our approach to facilitate future research.
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APPENDIX

This appendix is intended as a primer on wavelet theory,
providing additional context for the method section. We start
with a short introduction to the MRA conditions, before show-
ing how orthogonal wavelet bases fulfill these requirements.
We then discuss how wavelet decompositions can efficiently be
computed using the Fast Wavelet Transform. For readers that
are interested in learning more about sparse signal processing
using wavelets, we warmly recommend [5, 17].

A. Multi-Resolution Analysis
Multi-resolution representations are regularly used in the

context of computer vision and robotics. For example, in
Laplacian image pyramids introduced by Burt and Adelson [2].
Mallat and Meyer [17], formalized the expected behavior of
multi-resolution representations through the MRA conditions:

∀(j, k) ∈ Z2, f(x) ∈ Vj ⇔ f(x− 2jk) ∈ Vj (14)
∀j ∈ Z, Vj+1 ⊂ Vj (15)
∀j ∈ Z, f(x) ∈ Vj ⇔ f(x/2) ∈ Vj+1 (16)

lim
j→∞

Vj =

∞⋂
j=−∞

Vj = {0} (17)

lim
j→−∞

Vj = closure

 ∞⋃
j=−∞

Vj

 = L2(R) (18)

V0 admits a Riesz basis (19)

where the sequence of subspaces {Vj}j∈Z corresponds to
the map’s representations at increasing resolution levels 2j ,
referred to as scales, and each Vj is a closed subspace of
Lebesgue space L2. Starting with condition 19, the most
common Riesz basis used in robotics consists of box functions
arranged to span the cells of a regular grid. In this case,
the scale 2j corresponds to the cell width. Condition 14
ensures self-similarity in space. Specifically, if subspace Vj
can represent function f(x), it can also represent the same
function shifted by integer multiple of the cell size. Condition
15 states that the subspaces are nested. In other words, any
function contained in subspace Vj+1 must also be contained in
next finer subspace Vj and by extension in all finer subspaces.
Condition 16 ensures self-similarity in scale. If Vj contains
f(x), Vj+1 must be able to contain f(x) dilated by 2. Finally,
conditions 17 and 18 ensure completeness. At the coarsest
scale (j → ∞), Vj only contains the zero element, whereas
refining the scale (j → −∞) eventually allows us to represent
any signal in L2.
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B. Orthogonal wavelet bases

The principal idea behind wavelets is that they represent the
difference between the consecutive resolutions of a signal’s
MRA. Formally, they span a second subspace Wj which is
the orthogonal complement to Vj , such that Vj ⊕Wj = Vj−1

where ⊕ is the vector-space direct sum operator. In words, this
means that by combining a signal’s representation Vj with
its wavelet details at the same resolution Wj we obtain the
signal’s representation at the next higher resolution Vj−1.

An orthogonal basis for all Vj can be obtained by translating
and dilating a single function ϕ, referred to as the scaling
function, as ϕjk(x) = 1

2j ϕ(
x−2jk

2j ). The scaling function can
be found by orthogonalizing the Riesz basis of V0 as described
in [17]. In similar fashion, an orthogonal basis for Wj can be
obtained by translating and scaling a single wavelet function
ψ as ψjk(x) =

1
2j ψ(

x−2jk
2j ). One condition that any wavelet

function has to fulfill in order to be admissible is that its
average must be zero

∫∞
−∞ ψ(x)dx = 0. More generally,

the scaling functions and wavelet functions can be seen as
complementary low and high-pass filters that, when combined,
can perfectly reconstruct the signal from the next finer scale.
Since wavelet bases form a valid MRA, this concept can be
applied recursively and the entire map can be represented by
stacking a single scaling function at the coarsest scale with a
hierarchy of wavelet functions at increasing scales.

Note that the Riesz basis consisting of box filters arranged
to span the cells of a regular grid, mentioned previously, is
already orthogonal. In fact, the unit box filter can be used as
a scaling function

ϕ(x) =

{
1 0 ≤ x < 1

0 otherwise
(20)

and doing so directly leads to the Haar basis [17]. The corre-
sponding Haar wavelet function can be derived by finding ϕ’s
orthogonal complement while enforcing the MRA conditions
and is given by

ψ(x) =


−1 0 ≤ x < 1/2

1 1/2 ≤ x < 1

0 otherwise
(21)

Orthogonal wavelet bases of R can be extended to separable
orthogonal bases b for Rn by combining the scaling and
wavelet functions along each dimension as

b =

{
n∏

k=1

ϕ(xk)
okψ(xk)

1−ok

}
∀o∈{0,1}n

(22)

C. The Fast Wavelet Transform

The discrete wavelet transform for a function f and wavelet
ψ is defined as the projection of f onto the set of all integer
scalings and translations of the wavelet function {ψjk}j,k∈Z.
Each wavelet coefficient djk is thus computed as

djk =
∞∑

x=−∞
f(x)

1

2j
ψ

(
x− 2jk

2j

)
(23)

where the summation could be replaced by an integral if the
domain of f is real-valued instead of discrete. Note that this
transform is linear and, for orthogonal wavelets, orthogonal.

The coefficients djk can efficiently be computed using
the FWT algorithm [17], which exploits the hierarchical
MRA structure to remove redundant operations. The FWT
is initialized by projecting f onto the scaling functions at
the finest scale a0k =

∑∞
−∞ f(x)ϕ (x− k) or with a good

approximation thereof. At each iteration, these coefficients
are then filtered and downsampled to obtain the wavelet and
scaling coefficients at the next coarser scale. These iterations
are typically repeated until only 1 scaling coefficient is left
or a desired number of levels is reached. For wavelets with
finite spatial support and functions f sampled at N points, the
FWT computes the full wavelet decomposition in O(N) time.
Extending the FWT to only (de)compress regions-of-interest
or single cells is straightforward and very efficient if the spatial
support of the chosen wavelet is small, as is the case for the
Haar wavelet.
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