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Abstract—Robots deployed in unstructured, real-world envi-
ronments operate under considerable uncertainty due to imper-
fect state estimates, model error, and disturbances. Given this
real-world context, the goal of this paper is to develop controllers
that are provably safe under uncertainties. To this end, we
leverage Control Barrier Functions (CBFs) which guarantee
that a robot remains in a “safe set” during its operation—
yet CBFs (and their associated guarantees) are traditionally
studied in the context of continuous-time, deterministic systems
with bounded uncertainties. In this work, we study the safety
properties of discrete-time CBFs (DTCBFs) for systems with
discrete-time dynamics and unbounded stochastic disturbances.
Using tools from martingale theory, we develop probabilistic
bounds for the safety (over a finite time horizon) of systems whose
dynamics satisfy the discrete-time barrier function condition in
expectation, and analyze the effect of Jensen’s inequality on
DTCBF-based controllers. Finally, we present several examples
of our method synthesizing safe control inputs for systems subject
to significant process noise, including an inverted pendulum, a
double integrator, and a quadruped locomoting on a narrow path.

I. INTRODUCTION

Safety is critical for a multitude of modern robotic systems,
from autonomous vehicles, to medical and assistive robots,
to aerospace systems. When deployed in the real world,
these systems face sources of uncertainty such as imperfect
perception, approximate models of the world and the system,
and unexpected disturbances. In order to achieve the high
degrees of safety necessary for these robots to be deployed at
scale, it is essential that controllers can not only guarantee safe
behavior, but also provide robustness to these uncertainties.

In the field of control theory, safety is often defined as
the forward invariance of a “safe set” [6]. In this view,
a closed-loop system is considered safe if all trajectories
starting inside the safe set will remain in this set for all
time. Several tools exist for generating controllers which can
guarantee this forward-invariance property, including Control
Barrier Functions (CBFs) [7], reachability-based controllers
[9], and state-constrained Model-Predictive Controller (MPC)
approaches [19]. Considerable advancements have been made
in guaranteeing safety or stability in the presence of bounded
uncertainties [37, 11, 8, 29, 20, 5]. Yet, less attention has
been paid to the case of unbounded uncertainties, where the
aforementioned methods generally do not apply.

Obtaining robust safety in the case of unbounded distur-
bances is particularly important when considering systems
subject to stochastic disturbances, since these disturbances are
often modeled as continuous random variables with unbounded

Fig. 1. Safety of a simulated quadrupedal robot locomoting on a narrow path
for a variety of controllers. (Top Left) The safe region that the quadruped
is allowed to traverse. (Bottom Left) A system diagram depicting the states
of the quadruped [x, y, θ]⊤. (Top Right) 50 trajectories for 3 controllers:
one without any knowledge of safety (knom), one with a standard safety filter
(DTCBF-OP), and finally our method which accounts for stochasticity (JED).
(Bottom Right) Plots of h(x), a scalar value representing safety. The system
is safe (i.e., in the green safe region) if h(x) ≥ 0.

support (e.g., zero-mean, additive Gaussian noise). For such
systems, it is impossible to give an absolute bound on the dis-
turbance magnitude. Existing methods for unbounded, random
disturbances fall into two categories. The first is to impose
step-wise chance constraints on a given safety criterion (e.g.,
a state constraint in MPC [19] or CBF-based controllers [4]),
which in turn provide one-step safety guarantees. The other
class of approaches [21, 26, 27, 17, 30] use Lyapunov or
barrier function techniques to provide bounds on the safety
probabilities for trajectories over a fixed time horizon; existing
approaches, however, often assume the presence of a stabiliz-
ing controller, or model the system in continuous-time (i.e.,
assume the controller has, in effect, infinite bandwidth).

In order to best represent the uncertainty that might ap-
pear from sources such as discrete-time perception errors or
sampled-data modeling errors, we focus our work on gen-
erating probabilistic bounds of safety for discrete-time (DT)
stochastic systems. While MPC state constraints are generally
enforced in discrete time, CBFs, normally applied in contin-
uous time, have a discrete-time counterpart (DTCBFs) that
were first introduced in [1] and have gained popularity due to
their compatibility with planners based on MPC [36, 23, 35],
reinforcement learning [15], and Markov decision processes



[3]. In a stochastic setting, martingale-based techniques have
been leveraged to establish safety guarantees [27, 30], yet
these works have limited utility when analyzing the safety of
discrete-time CBF-based controllers.

In particular, the “c-martingale” condition used in [30] does
not admit a multiplicative scaling of the barrier function, and
therefore, at best, provides a weak worst-case safety bound for
CBF-based controllers that grows linearly in time. The work
of [27] (which builds upon [21], as does this paper) is largely
focused on offline control synthesis to achieve a desired safety
bound (as opposed to the online, optimization-based control
studied in this work). Also, this method can only generate
discrete-time controllers for affine barriers, which severely
limits its applicability to general barrier functions. Both [30]
and [27] depend on sum-of-squares (SoS) programming [25]
for control synthesis/system verification, thereby requiring an
offline step that scales poorly with the state dimension. The
goal of this paper is to extend the results of [21] in a different
direction, and thereby enable the synthesis of online controllers
that can be realized on robotic systems.

The main contribution of this paper is to apply martingale-
based probability bounds in the context of discrete-time CBFs
to guarantee robust safety under stochastic uncertainty. To
this end, we leverage the bounds originally presented in the
seminal work by Kushner [21]. Our first key contribution is
the translation of these results from a Lyapunov setting to
a CBF one. To this end, we present a new proof of the
results in [21] which we believe to be more complete and
intuitive and which relates to the existing results of Input-
to-State Safety (ISSf) for systems with bounded uncertainties
[20]. Furthermore, we present a method (based on Jensen’s
inequality) to account for the effects of process noise on a
DTCBF-based controller. Finally, we apply this method to a
variety of systems in simulation to analyze the tightness of
our bound and demonstrate its utility. These experiments range
from simple examples that illustrate the core mathematics—
a single- and double-integrator and a pendulum—to a high
fidelity simulation of a quadrupedal robot locomoting along a
narrow path with the uncertainty representing the gap between
the simplified and full-order dynamics models.

II. BACKGROUND

In this section we provide a review of safety for discrete-
time nonlinear systems via control barrier functions (CBFs),
and review tools from probability theory useful for studying
systems with stochastic disturbances.

A. Safety of Discrete-time Systems

Consider a discrete-time (DT) nonlinear system with dy-
namics given by:

xk+1 = F(xk,uk), ∀k ∈ N, (1)

with state xk ∈ Rn, input uk ∈ Rm, and continuous dynamics
F : Rn × Rm → Rn. A continuous state-feedback controller
k : Rn → Rm yields the DT closed-loop system:

xk+1 = F(xk,k(xk)), ∀k ∈ N. (2)

We formalize the notion of safety for systems of this form
using the concept of forward invariance:

Definition 1 (Forward Invariance & Safety [11]). A set C ⊂
Rn is forward invariant for the system (2) if x0 ∈ C implies
that xk ∈ C for all k ∈ N. In this case, we call the system (2)
safe with respect to the set C.

Discrete-time barrier functions (DTBFs) are a tool for
guaranteeing the safety of discrete-time systems. Consider a
set C ≜ {x ∈ Rn | h(x) ≥ 0} expressed as the 0-superlevel
set of a continuous function h : Rn → R. We refer to such a
function h as a DTBF1 if it satisfies the following properties:

Definition 2 (Discrete-Time Barrier Function (DTBF) [1]).
Let C ⊂ Rn be the 0-superlevel set of a continuous function
h : Rn → R. The function h is a discrete-time barrier function
(DTBF) for (2) on C if there exists an α ∈ [0, 1] such that for
all x ∈ Rn, we have that:

h(F(x,k(x))) ≥ αh(x). (3)

This inequality mimics that of discrete-time Lyapunov func-
tions [12], and similarly regulates the evolution of h based
on its previous value. DTBFs serve as a certificate of forward
invariance as captured in the following theorem:

Theorem 1 ([1]). Let C ⊂ Rn be the 0-superlevel set of a
continuous function h : Rn → R. If h is a DTBF for (2) on
C, then the system (2) is safe with respect to the set C.

Intuitively, the value of h(xk) can only decay as fast as the
geometric sequence αkh(x0), which is lower-bounded by 0,
thus ensuring the safety (i.e., forward invariance) of C.

Discrete-time control barrier functions (DTCBFs) provide
a tool for constructively synthesizing controllers that yield
closed-loop systems that possess a DTBF:

Definition 3 (Discrete-Time Control Barrier Function
(DTCBF) [1]). Let C ⊂ Rn be the 0-superlevel set of a
continuous function h : Rn → R. The function h is a discrete-
time control barrier function (DTCBF) for (1) on C if there
exists an α ∈ [0, 1] such that for each x ∈ Rn, there exists a
u ∈ Rm such that:

h(F(x,u)) ≥ αh(x). (4)

Given a CBF h for (1) and a corresponding α ∈ [0, 1], we
define the point-wise set of control values:

KCBF(x) = {u ∈ Rm | h(F(x,u)) ≥ αh(x)} . (5)

This yields the following result:

Theorem 2 ([2]). Let C ⊂ Rn be the 0-superlevel set of a
continuous function h : Rn → R. If h is a DTCBF for (1) on C,
then the set KCBF(x) is non-empty for all x ∈ Rn, and for any
continuous state-feedback controller k with k(x) ∈ KCBF(x)
for all x ∈ Rn, the function h is a DTBF for (2) on C.

Given a continuous nominal controller knom : Rn × N →
Rm and a DTCBF h for (1) on C, a controller k satisfying

1The state constraint xk ∈ C, when expressed as h(xk) ≥ 0, is the special
case of a DTBF with α = 0.



k(x, k) ∈ KCBF(x) for all x ∈ Rn and k ∈ N can be specified
via the following optimization problem:

k(x) = argmin
u∈Rm

∥u− knom(x, k)∥2 (DTCBF-OP)

s.t. h(F(x,u)) ≥ αh(x).

We note that unlike the affine inequality constraint that
arises with continuous-time CBFs [7], the DTCBF inequal-
ity constraint (4) is not necessarily convex with respect to
the input, preventing it from being integrated into a convex
optimization-based controller. To solve this issue, it is often
assumed that the function h ◦ F : Rn × Rm → R is concave
with respect to its second argument [1, 3, 36]. This assumption
was shown to be well motivated for concave h [31].

B. Stochastic Preliminaries
We now review tools from probability theory that will allow

us to utilize information about the distribution of a stochastic
disturbance signal in constructing a notion of stochastic safety
and corresponding safety-critical controllers. We choose to
provide this background material at the level necessary to
understand our later constructions of stochastic safety and
safety-critical controllers, but refer readers to [18] for a precise
measure-theoretic presentation of the following concepts.

The key tool underlying our construction of a notion of
stochastic safety is a nonnegative supermartingale, a specific
type of expectation-governed random process:

Definition 4. Let xk be a sequence of random variables that
take values in Rn, W : Rn × N → R, and suppose that
E
[
|W (xk, k)|

]
<∞ for k ∈ N. The process Wk ≜W (xk, k)

is a supermartingale if:

E[Wk+1 | x0:k] ≤Wk almost surely for all k ∈ N, (6)

where x0:k indicates the random variables {x0,x1, . . . ,xk}.
If, additionally, Wk ≥ 0 for all k ∈ N, Wk is a nonnegative
supermartingale. If the process is non-decreasing in expecta-
tion, the process Wk is a submartingale. If the inequality (6)
holds with equality, the process Wk is a martingale.

An important result from martingale theory that we will use
to develop probabilistic safety guarantees is Ville’s inequality,
which allows us to bound the probability that a nonnegative
supermartingale will rise above a certain value:

Theorem 3 (Ville’s Inequality [33]). Let Wk be a nonnegative
supermartingale. Then for all λ ∈ R>0,

P
{
sup
k∈N

Wk > λ

}
≤ E[W0]

λ
. (7)

Intuitively, Ville’s inequality can be compared with
Markov’s inequality for nonnegative random variables; since
the process Wk is nonincreasing in expectation, Ville’s in-
equality allows us to control the probability the process instead
moves upward above λ.

Lastly, as we will see when synthesizing safety-critical
controllers in the presence of stochastic disturbances, we will
need to enforce conditions on the expectation of a DCTBF.
In doing so, we will need to relate the expectation of the

DCTBF h(xk+1) to the expectation of the state xk+1. This
will be achieved using Jensen’s inequality:

Theorem 4 (Jensen’s Inequality [22]). Consider a continuous
function h : Rn → R and a random variable x that takes
values in Rn with E[∥x∥] <∞. We have that:{

if h is convex, then E[h(x)] ≥ h(E[x]),
if h is concave, then E[h(x)] ≤ h(E[x]).

(8)

III. SAFETY OF DISCRETE-TIME STOCHASTIC SYSTEMS

In this section we provide one of our main results in
the form of a bound on the probability that a system with
stochastic disturbances will exit a given superlevel set of a
DTBF over a finite time horizon.

Consider the following modification of the DT system (1):

xk+1 = Fd(xk,uk,dk), ∀k ∈ N, (9)

where the dynamics Fd : Rn × Rm × Rℓ → Rn now also
includes a disturbance dk taking values in Rℓ. For any state-
feedback controller, this has an associated closed-loop system:

xk+1 = Fd(xk,k(xk),dk), ∀k ∈ N. (10)

We assume that x0 is known and the disturbances dk are a
sequence of independent and identically distributed (with dis-
tribution D) random variables2 with (potentially unbounded)
support on Rℓ, generating the random process x1:k. To study
the safety of this system, we will use the following definition:

Definition 5 (K-Step Exit Probability). Let h : Rn → R be
a continuous function. For any K ∈ N, γ ∈ R≥0, and initial
condition x0 ∈ Rn, the K-step exit probability of the closed-
loop system (10) is given by:

Pu(K, γ,x0) = P
{

min
k∈{0,...,K}

h(xk) < −γ
}
. (11)

which describes the probability that the system will leave
the −γ superlevel set of h within K steps. This probability
is directly related to the robust safety concept of Input-to-
State Safety (ISSf) [20] which reasons about the superlevel
set of h which is rendered safe in the presence of bounded
disturbances. For the remainder of this work, we will omit the
dependence of Pu on K, γ, and x0 for notational simplicity.

Remark 1. The finite time aspect of K-step exit probabilities
is critical since systems exposed to unbounded disturbances
will exit a bounded set with probability Pu = 1 over an infinite
horizon [30, 16]. Intuitively, this is because a sufficiently
large sample will eventually be drawn from the tail of the
distribution that forces the system out in a single step.

Given this definition, we now provide one of our main re-
sults relating DTBFs to K-step exit probabilities. We note that
this result is a reframing of the stochastic invariance theorem
in [21, 27]. Our reframing features three key components.

2This implies the dynamics define a Markov process, i.e.
E[h(Fd(xk,uk,dk)) | x0:k] = E[h(Fd(xk,uk,dk)) | xk], since
the state xk+1 at time k + 1 only depends on the state xk , input uk , and
disturbance dk at time k.



First, we develop our results using the standard formulation
of DTBFs covered in the background. Second, we produce a
probability bound not only for C (defined as the 0-superlevel
set of h, such that γ = 0), but for all non-positive superlevel
sets of h (γ ≥ 0), a stochastic variant of ISSf [20]. Third,
we present a complete proof of our result, with the goal of
illuminating how to leverage tools from martingale theory to
reason about the safety of discrete-time stochastic systems.

Theorem 5. Let h : Rn → R be a continuous, upper-bounded
function with upper bound M ∈ R>0. Suppose there exists an
α ∈ (0, 1) and3 δ ≤ M(1 − α) such that the closed-loop
system (10) satisfies:

E[ h(Fd(x,k(x),d)) | x ] ≥ αh(x) + δ, (12)

for all x ∈ Rn, with d ∼ D. For any K ∈ N and γ ∈ R≥0, if
δ < −γ(1− α), we have that:

Pu ≤
(
M − h(x0)

M + γ

)
αK +

M(1− α)− δ

M + γ

K∑
i=1

αi−1. (13)

Alternatively if δ ≥ −γ(1− α), then:

Pu ≤ 1− h(x0) + γ

M + γ

(
Mα+ γ + δ

M + γ

)K

. (14)

Remark 2. The upper bound δ ≤M(1−α) is relatively non-
restrictive, as not only is δ typically negative, but it must hold
such that, in expectation, h(xk+1) cannot rise above the upper
bound M on h. The switching condition between (13) and (14)
of δ = γ(1 − α) corresponds to whether, in expectation, the
one-step evolution of the system remains in the set Cγ = {x ∈
Rn | h(x) ≥ −γ} when it begins on the boundary of Cγ .

To make our argument clear at a high level, we begin with
a short proof sketch before proceeding in detail.

Proof sketch: The key tool in proving Theorem 5 is
Ville’s inequality (7). Since h(xk), in general, is not a
super- or submartingale, we will first construct a nonnegative
supermartingale, Wk ≜ W (xk, k), by scaling and shifting
h(xk). We can then apply Ville’s inequality (7) to bound the
probability of Wk going above any λ > 0. Next we find a
particular value of λ, denoted λ∗, such that:

max
k∈{0,...,K}

Wk ≤ λ∗ =⇒ min
k∈{0,...,K}

h(xk) ≥ −γ. (15)

Intuitively, this means that any sequence Wk that remains
below λ∗ ensures that the corresponding sequence h(xk)
remains (safe) above −γ. This allows us to bound the K-
step exit probability Pu of our original process h(xk) with
the probability that Wk will rise above λ∗:

Pu ≤ P
{

max
k∈{0,...,K}

Wk > λ∗
}

≤ E[W0]

λ∗
=
W0

λ∗
, (16)

where the last equality will follow as it is assumed x0 is known
a priori. Particular choices of W and λ∗ will yield the bounds
stated in the theorem, completing the proof.

3The original presentation of Theorem 5 in [21] considers variable δk for
k ∈ {0, . . . ,K}, which are known a priori. In most practical applications,
one assumes a lower bound that holds for all δk , motivating our use of a
constant δ. Moreover, the use of a constant δ significantly clarifies the proof.

A. Proof: Constructing a Nonnegative Supermartingale

We will begin by constructing a nonnegative supermartin-
gale, allowing us to use Ville’s inequality. To construct this
supermartingale, we first note that by rearranging terms in the
inequality in (12), we can see the process M−h(xk) resembles
a supermartingale:

E[M − h(xk+1) | xk] ≤ α(M − h(xk)) +M(1− α)− δ,

≜ α(M − h(xk)) + φ, (17)

but with a scaling α and additive term φ ≜ M(1 − α) − δ
that makes E [M − h(xk+1) | xk] ≰ M − h(xk) in general.
To remove the effects of α and φ, consider the function W :
Rn × N → R defined as:

W (xk, k) ≜ (M − h(xk))θ
k︸ ︷︷ ︸

negate and scale

−φ

k∑
i=1

θi︸ ︷︷ ︸
cancel φ

+ φ

K∑
i=1

θi︸ ︷︷ ︸
ensure W ≥ 0

, (18)

where θ ∈ [1,∞) will be used to cancel the effect of α, but
is left as a free variable that we will later use to tighten our
bound on Pu. Denoting Wk ≜W (xk, k), we now verify Wk is
a nonnegative supermartingale. We first show that Wk ≥ 0 for
all k ∈ {0, . . . ,K}. Combining the two sums in (18) yields:

Wk = (M − h(xk))θ
k + φ

K∑
i=k+1

θi, (19)

which is nonnegative as h(x) ≤ M for all x ∈ Rn, θ ≥ 1,
and φ ≥ 0 since δ ≤M(1−α) by assumption. We now show
that Wk satisfies the supermartingale inequality (6):

E[Wk+1 | x0:k] = E[Wk+1 | xk], (20)

= (M − E[h(xk+1) | xk])θ
k+1 + φ

K∑
i=k+2

θi, (21)

≤ (M − αh(xk)− δ)θk+1 + φ

K∑
i=k+2

θi, (22)

= αθ(M − h(xk))θ
k + θk+1 ((1− α)M − δ)︸ ︷︷ ︸

=φ

+φ

K∑
i=k+2

θi,

= αθ︸︷︷︸
req.≤1

(M − h(xk))θ
k + φ

K∑
i=k+1

θi ≤Wk, (23)

where (20) is due to the Markovian nature of system (10), (21)
comes from using (19) to write Wk+1, (22) follows from (12),
and (23) follows from the preceding line using the definition
of φ and assuming the further requirement that θ ≤ 1

α . Thus,
we have shown that Wk is a nonnegative supermartingale.

B. Proof: Bounding the Exit Probability via Ville’s Inequality

Since Wk is a nonnegative supermartingale, we can apply
Ville’s inequality to establish:

P
{

max
k∈{0,...,K}

Wk > λ

}
≤ E[W0]

λ
=
W0

λ
. (24)



for all λ ∈ R>0. To relate this bound to the K-step exit
probability Pu, we seek a value of λ, denoted λ∗, such that:

max
k∈{0,...,K}

Wk ≤ λ∗. =⇒ min
k∈{0,...,K}

h(xk) ≥ −γ. (25)

In short, we will choose a value of λ∗ that is small enough to
ensure that all trajectories of Wk that remain below λ∗ must
also have hk ≥ −γ. To this end, we use the geometric series
identity4 ∑k

i=1 θ
i−1 = 1−θk

1−θ to rewrite Wk as:

Wk = (M − h(xk))θ
k + φθ

θK − θk

θ − 1
. (26)

Let us define:

λk =

(
γ +M − φθ

θ − 1

)
θk +

φθ

θ − 1
θK > 0, (27)

which, intuitively, applies the same time-varying scaling and
shift to a constant, −γ, that was applied to h(xk) to yield Wk

(26). Let us choose:

λ∗ ≜ min
k∈{0,...,K}

λk. (28)

Since we assume maxk∈{0,...,K}Wk ≤ λ∗, we can write, for
all k ∈ {0, . . . ,K}:

0 ≥Wk − λ∗ ≥Wk − λk = (−γ − hk)θ
k. (29)

Since θ > 1, this implies that −γ − hk ≤ 0 for all k ∈
{0, . . . ,K}, and thus mink∈{0,...,K} h(xk) ≥ −γ, as needed.

C. Proof: Choosing θ to Minimize the Ville’s Bound
Since our supermartingale Wk includes a free parameter

θ ∈ (1, 1
α ], we will choose a value of θ in this interval which

provide the tightest bound on Pu.
Case 1: Consider the first case where δ < −γ(1 − α),

implying φ > (M + γ)(1−α). In this case 1
α < M+γ

M+γ−φ and
thus all of the allowable choices of θ ∈ (1, 1

α ) are such that
θ < M+γ

M+γ−φ . Denoting k∗ such that λ∗ = λk∗ , we have that:

λ∗ =

(
γ +M − φθ

θ − 1

)
︸ ︷︷ ︸

≤0

θk
∗
+

φθ

θ − 1
θK . (30)

Thus, we know mink∈{0,...,K} λk occurs at k∗ = K and so:

Pu ≤ W0

λ∗
=
M − h(x0) +

φθ
θ−1

(
θK − 1

)
(M + γ)θK

. (31)

Since this bound is a decreasing function of θ (as shown in
Lemma 2 in Appendix A), we choose the largest allowable
value θ∗ = 1

α to achieve the bound:

Pu ≤ W0

λ∗
=
M − h(x0) +

φ
1−α

(
α−K − 1

)
(M + γ)α−K

, (32)

=

(
M − h(x0)

M + γ

)
αK +

M(1− α)− δ

M + γ

K∑
i=1

αi−1, (33)

4At θ = 1, the fraction 1−θk

1−θ
is not well defined. However, the proof can

be carried out using the summation notation. In this case λ∗ = M + γ, and
(24) yields Pu ≤ 1− h(x0)+γ−φK

M+γ
.

where we again use the geometric series identity.
Case 2: Now consider the second case where δ ≥ −γ(1−

α), so φ ≤ (M + γ)(1 − α), which implies that the set
[ M+γ
M+γ−φ ,

1
α ] is nonempty. Choosing a value of θ in this set

ensures that:

λ∗ =

(
γ +M − φθ

θ − 1

)
θk

∗

︸ ︷︷ ︸
≥0

+
φθ

θ − 1
θK . (34)

Thus mink∈{0,...,K} λk occurs at k∗ = 0 and:

Pu ≤ W0

λ
=

(M − h(x0)) +
φθ
θ−1

(
θK − 1

)
(M + γ) + φθ

θ−1 (θ
K − 1)

, (35)

= 1− h(x0) + γ

M + γ + φθ
θ−1 (θ

K − 1)
. (36)

Since this bound is increasing in θ (as shown in Lemma 3 in
Appendix A), we choose θ∗ = M+γ

M+γ−φ to achieve the bound:

Pu ≤ 1−
(
h(x0) + γ

M + γ

)(
Mα+ γ + δ

M + γ

)K

. (37)

If, alternatively, we choose θ ∈
(
1, M+γ

M+γ−φ

]
, then the

inequality in (30) holds, k∗ = K, and the bound is decreasing
in θ as in Case 1. Evaluating this bound for the minimizing
value θ∗ = M+γ

M+γ−φ again yields:

Pu ≤ M − h(x0) + (M + γ)(θK − 1)

(M + γ)θK
, (38)

= 1−
(
h(x0) + γ

M + γ

)(
Mα+ γ + δ

M + γ

)K

. (39)

■

IV. PRACTICAL CONSIDERATIONS FOR ENFORCING
STOCHASTIC DTCBFS

Theorem 5 allows us to reason about the finite-time safety
of systems governed by DTBFs. To utilize the results of this
theorem in a control setting, we aim to use DTCBFs to develop
control methods which enforce the expectation condition:

E[h(Fd(xk,uk,dk)) | xk] ≥ αh(xk). (40)

If such a condition can be enforced, then the result of Theorem
5 can be directly applied to provide probabilistic bounds
on the system’s safety.5 However, since the composition of
system dynamics with the disturbance may make computing
this expectation difficult, we instead focus on systems with
additive disturbances of the form:

xk = F(xk,uk) + dk, (41)

where dk takes values in Rn and the expectation condition for
Theorem 5 becomes,

E[h(F(xk,uk) + dk) | xk] ≥ αh(xk). (42)

5We note that the bound provided by Theorem 5 assumes that there exists
a control uk satisfying the constraint (40) for any state xk . This may not
be possible for systems with limited actuation or underactuated dynamics –
algorithms for verifying this existence for a particular choice of h, α is an
interesting direction for future work.



Like the DTCBF-OP controller, we seek to enforce this
constraint using an optimization-based controller that enforces
safety while achieving pointwise minimal deviation from a
nominal controller knom in the form of an Expectation-based
DTCBF (ED) Controller:

kED(xk) = argmin
u∈Rm

∥u− knom(xk, k)∥2 (ED)

s.t. E[h(F(xk,u) + dk) | xk] ≥ αh(xk).

The expectation in (ED) adds complexity that is not gener-
ally considered in the application of deterministic DTCBFs.
More commonly, CBF-based controllers solve “certainty-
equivalent” optimization programs, like this Certainty-
Equivalent DTCBF (CED) controller, that replaces the ex-
pected barrier value E[h(xk+1) | xk] with the barrier evaluated
at the expected next state, h(E[xk+1 | xk]):

kCED(xk) = argmin
u∈Rm

∥u− knom(xk, k)∥2 (CED)

s.t. h(F(xk,u) + E[dk]) ≥ αh(xk).

where E[F(xk,uk)|xk] = F(xk,uk) and E[dk|xk] = E[dk].
This constraint is often easier to evaluate than (40) since it al-
lows control actions to be selected with respect to the expected
disturbance E[dk] without needing to model the disturbance
distribution D. If the disturbance is zero-mean, then this form
of the constraint is implicitly enforced by DTCBF controllers
such as those presented in [1, 36]. However, when replacing
ED with CED it is important to consider the effect of Jensen’s
inequality in Theorem 4.

If the “certainty-equivalent” constraint in CED is strictly
concave6, then we can apply the results of Theorem 5 directly
since Jensen’s inequality tightens the constraint and ensures
satisfaction of the expectation condition (12). Unfortunately,
using such a controller is a non-convex optimization program
which can be impractical to solve. If, instead, the constraint
is convex, then CED is a convex program, but does not
necessarily enforce the expectation condition (12) in Theorem
(5) due to the gap introduced by Jensen’s inequality.

In order to apply the results of Theorem 5 to controllers of
the form (CED) with convex constraints, we must first provide
a bound on the gap introduced by Jensen’s inequality. In
particular, for any concave function h : Rn → R and random
variable d ∼ D, we seek to determine a value ψ ∈ R≥0 such
that, for all x ∈ Rn and u ∈ Rm:

E[h(F(x,u) + d) | x] ≥ h(F(x,u) + E[d])− ψ, (43)

thus quantifying the gap introduced by Jensen’s inequality.
A large body of work has studied methods for finding the

smallest possible ψ that satisfies (43). Here we adapt a result
in [10] to achieve a relatively loose, but straightforward bound:

Lemma 1. Consider a twice-continuously differentiable, con-
cave function h : Rn → R with supx∈Rn ∥∇2h(x)∥2 ≤ λmax

for some λmax ∈ R≥0, and a random variable x that takes

6The constraint h(xk + u) ≥ αh(xk) is concave in u when h is convex
and it is convex in u when h is concave.

Fig. 2. The dashed lines represent the theoretical probability bounds for the
system as in Theorem 5. The solid lines represent the Monte Carlo (MC)
estimated Pu across 500 experiments.

values in Rn with E[∥x∥] <∞ and ∥cov(x)∥ <∞. Then we
have that:

E[h(x)] ≥ h(E[x])− λmax

2
tr(cov(x)). (44)

The proof is included in Appendix B. We note that although
this value of ψ = λmax

2 tr(cov(x)) is easy to interpret, tighter
bounds exist which have less restrictive assumptions than a
globally bounded Hessian [22]. We also note that one could
also use sampling-based methods to approximately satisfy the
constraint (43) by estimating ψ empirically.

Next we present a controller which combines the mean-
based control of the “certainty equivalent” (CED) while
also accounting for Jensen’s inequality. This Jensen-Enhanced
DTCBF Controller (JED) includes an additional control pa-
rameter cJ ≥ 0 to account for Jensen’s inequality:

kJED(xk) = argmin
u∈Rm

∥u− knom(xk, k)∥2 (JED)

s.t. h(F(xk,uk) + E[dk])− cJ ≥ αh(xk).

Given this controller and a method for bounding ψ, we can
now apply Theorem 5 while accounting for (or analyzing) the
effects of Jensen’s inequality on the (JED) controller:

Theorem 6. Consider the system (41) and let h : Rn →
R be a twice-continuously differentiable, concave function
such that supx∈Rn h(x) ≤ M for M ∈ R>0 and
supx∈Rn ∥∇2h(x)∥2 ≤ λmax for λmax ∈ R≥0. Suppose there
exists an α ∈ (0, 1) and a cJ ∈ [0, λmax

2 tr(cov(d))+M(1−α)]
such that:

h(F(x,k(x)) + E[d])− cJ ≥ αh(x), (45)

for all x ∈ Rn with d ∼ D. Then we have that:

E[ h(F(x,k(x)) + d) | x ] ≥ αh(x) + δ, (46)

for all x ∈ Rn with d ∼ D and δ = cJ − λmax
2 tr(cov(dk)).

Proof: Given x ∈ Rn, Lemma 1 ensures that:

0 ≤ h(F(x,k(x)) + E[d])− cJ − αh(x) (47)
≤ E[h(F(x,k(x)) + d) | x] + ψ − cJ − αh(x) (48)

where ψ = λmax
2 tr(cov(d)). Letting δ = cJ − λmax

2 tr(cov(d))
yields the the desired result.

V. PRACTICAL EXAMPLES

In this section we consider a variety of simulation examples
that highlight the key features of our approach.



Fig. 3. (Top Left) System diagram of the inverted pendulum. (Top Right)
500 one second long example trajectories starting at x0 = 0. (Bottom Left)
Monte Carlo estimates of Pu for γ = 0 using 500 one second long trials
for each initial conditions represented by a black dot. (Bottom Right) Our
(conservative) theoretical bounds on Pu from Theorem 5

A. Linear 1D System

Here we analyze our bounds by considering the case of
unbounded i.i.d. disturbances dk ∼ N (0, 1) for the one
dimensional system (x, u,∈ R) and safe set:

xk+1 = xk + 2 + uk + σdk, C = {x | 1− x2 ≥ 0}. (49)

The Jensen gap for this system and DTCBF is bounded by
ψ = σ2. For simulation, we employ the JED controller with
cJ = σ2, α = 1−σ2, and nominal controller knom(xk, k) = 0.
Figure 2 shows the results of 500 one second long trials run
with a variety of σ ∈ [0, 0.2] and also displays how the bound
on Pu decreases as γ increases.

B. Simple Pendulum

Next we consider an inverted pendulum about its upright
equilibrium point with the DT dynamics:[

θk+1

θ̇k+1

]
=

[
θk +∆tθ̇k

θ̇k +∆t sin(θk)

]
+

[
0

∆tu

]
+ dk, (50)

with time step ∆t = 0.01 sec, i.i.d disturbances dk ∼
N (02,Diag([0.0052, 0.0252]]), and safe set7:

C =

{
x ∈ Rn

∣∣∣∣ 1− 62

π2
x⊤
[

1 3−
1
2

3−
1
2 1

]
x︸ ︷︷ ︸

hpend(x)

≥ 0

}
(51)

which is constructed using the continuous-time Lyapunov
equation as in [31] and for which |θ| ≤ π/6 for all x ∈ C.
Figure 3 shows the results of 500 one second long trials
for each x0 ∈ C using the JED controller with parameters
α = 1 − ψ, cJ = ψ, where ψ = λmax

2 tr(cov(dk)). This figure
highlights the influence of x0 and shows how the bound on
Pu increases as h(x0) decreases.

Fig. 4. Simulation results for double integrator over 500 trials. (Top left):
Planar (x, y) trajectories for the approximated ED controller, with the safe
set (a unit square) plotted in green. (Top right): Planar (x, y) trajectories for
a CED controller. (Bottom left): The h(xk) for both controllers, with the
max and min values shaded. (Bottom right): Percent of trajectories that have
remained safe over time. We also plot our (conservative) bound (14) on the
unsafe probability Pu.

C. Double Integrator

We also consider the problem of controlling a planar system
with unit-mass double-integrator dynamics to remain inside a
convex polytope (in particular, a unit square centered at the
origin). Using Heun’s method, the dynamics are given by:

xk+1 =

[
I2 ∆t I2
02 I2

]
xk +

[
∆t2

2 I2
∆tI2

]
uk + dk, (52)

≜ Axk +Buk + dk, (53)

where ∆t is the integration time step and dk ∼ N (04,Q) is
a zero-mean Gaussian process noise added to the dynamics.
Here we use ∆t = 0.05 sec, and Q = BBT , which
corresponds to applying a disturbance force fk ∼ N (0, I2)
to the system at each timestep.

To keep the system inside a convex polytope, we seek to
enforce the affine inequalities Cx ≤ w for C ∈ Rnc×n,w ∈
Rnc . Thus, we define our barrier h(x) = −max(Cx − w),
where max(·) defines the element-wise maximum, and h(x) ≥
0 if and only if the constraint Cx ≤ w holds. Implementing
the ED controller for this system is non-trivial, since the
expectation of h(x) for a Gaussian-distributed x does not have
a closed form. Similarly, implementing the JED controller
to account for Jensen’s inequality is non-trivial since h is
not twice continuously differentiable. We instead choose to
enforce a conservative approximation of the barrier condition
(40) using the log-sum-exp function. As we show in Appendix
C, this approximation yields an analytic lower bound (derived
using the moment-generating function of Gaussian r.v.s) on
E[h(xk+1)] which can be imposed via a convex constraint.

Figure 4 plots the results of 500 simulated trajectories for
the double integrator system using the proposed ED controller,

7Diag: Rn → Rn×n generates a square diagonal matrix with its argument
along the main diagonal.



and the certainty equivalent CED controller that neglects the
presence of process noise. Both controllers have a nominal
controller knom(x) = [50, 0] which seeks to drive the system
into the right wall. All trajectories start from the origin. We
note the proposed controller is indeed more conservative than
the CED controller, yielding both fewer and smaller violations
of the safe set. In the bottom right, we also plot our bound
as a function of the time horizon, which we note is quite
conservative compared to our Monte Carlo estimate of the
safety probability, motivating future work.

D. Quadruped
Finally, we consider the problem of controlling a simulated

quadrupedal robot locomoting along a narrow path. The sim-
ulation is based on a Unitree A1 robot as shown in Figure
1 which has 18 degrees of freedom and 12 actuators. with
configuration space coordinates q ∈ R18, the full state is
given by x = (q, q̇) ∈ R36. For simulated walking, a no-
slip condition, c(q) = 0 ∈ Rc, is enforced on the feet
where c depends on the number of feet in contact with the
ground. As discussed in [32], when c(q) is differentiated
twice, D’Alembert’s principle applied to the constrained Euler-
Lagrange equations yields the robotic system dynamics:

D(q)q̈+H(q, q̇) = Bu+ J(q)⊤λ, (54)

J(q)q̈+ J̇(q, q̇)q̇ = 0, (55)

where D(q) ∈ R18×18 is the mass-inertia matrix, H(q, q̇) ∈
R18 contains the Coriolis and gravity terms, B ∈ R18×12 is the
actuation matrix, J(q) = ∂c(q)/∂q ∈ Rc×18 is the Jacobian
of the holonomic constraints, and λ ∈ Rc is the constraint
wrench. These full-system dynamics including ground contacts
were used in our simulations.

In order to represent the error caused by uncertain terrain,
zero mean Gaussian disturbances are added to the quadruped’s
(x, y) body position and velocity at 1kHz with variances of
2.25 × 10−6 and 0.01 respectively. This noise was chosen
to qualitatively match the rough-terrain walking that we have
observed in experiments; a video comparing our simulated
walking to rough-terrain walking can be found here.

For joint-level torque control, an ID-QP controller designed
using concepts in [14] and implemented at 1kHz is used with
dynamics (54, 55) to track center-of-mass velocities and angle
rates with swing legs following a Reibert-style trajectory in a
diagonal walking gait using the motion primitive framework
in [32]. We simulate the entire quadruped’s dynamics (54, 55),
but follow a similar reduced-order-modeling methodology to
[24] and consider the following simplified discrete-time single-
integrator system for DTCBF-based control:

xk+1 = xk +∆t

cos θk − sin θk 0
sin θk cos θk 0
0 0 1

vxkvyk
θk

+ dk. (56)

where xk =
[
xk, yk, θk

]⊤
and ∆t = 0.05 seconds. Here

the i.i.d. random process dk models the random disturbances
introduced to the planar (x, y) position and velocity as well
as the dynamics-mismatch between the full-order quadrupedal
dynamics (54, 55) and the simplified model (56).

Using the motion primitive framework presented in [32],
the quadruped is commanded to stand and then traverse
a 7 meter path that is 1 meter wide, with the safe set
C = {x ∈ Rn | 0.52 − y2 ≥ 0}. For this simula-
tion, three controllers are compared: a simple nominal con-
troller knom(x) =

[
0.2, 0, −θ

]⊤
with no understand-

ing of safety, the DTCBF-OP controller with α = 0.99,
and our proposed JED controller with α = 0.99 and
cJ = ψ using the mean and covariance estimates, E[dk] ≈[
−0.0132, −0.0034, −0.0002

]⊤
and tr(cov(dk)) ≈ ψ =

0.000548, which were estimated using 15 minutes of 20 Hz
walking data controlled by knom and which characterize the
effect of both the planar disturbances and the model-mismatch
between (54, 55) and (56).

The results of 50 trials for each controller can be seen
in Figure 1. As expected, knom generated the largest safety
violations and JED the smallest and fewest safety violations.

VI. CONCLUSION

In this work, we developed a bound for the finite-time
safety of stochastic discrete-time systems using discrete-time
control barrier functions. Additionally, we presented a method
for practically implementing convex optimization-based con-
trollers which satisfy this bound by accounting for or ana-
lyzing the effect of Jensen’s inequality. We presented several
examples which demonstrate the efficacy of our bound and
our proposed ED and JED controllers,

This paper offers a large variety of directions for future
work. In particular, in our practical examples, we find the
safety bound presented here is often quite conservative in prac-
tice. One way forward would be to find other supermartingale
transformations of the process h(xk) (perhaps programatically,
as in [30]) that can yield tighter bounds than those in The-
orem 5. Another potential avenue may consider alternative
martingale inequalities to the Ville’s inequality used in this
work. Another important open question is how to incorporate
state uncertainty into our framework. This would allow us to
reason about the safety of CBF-based controllers that operate
in tandem with state estimators such as Kalman Filters or
SLAM pipelines. Similarly, our methods may have interesting
applications in handling the dynamics errors introduced in
sampled-data control which can perhaps be modeled as a
random variable or learned using a distribution-generating
framework such as a state-dependent Gaussian processes or
Bayesian neural networks. Finally, we assume that the distur-
bance distribution D is known exactly, a priori; it would be
interesting to consider a “distributionally robust” variant of
the stochastic barrier condition (40) that can provide safety
guarantees for a class of disturbance distributions.
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APPENDIX

A. Lemmas for Theorem 5
The following lemmas are used to prove optimality of the

bound in Theorem 5 Cases 1 and 2. These lemmas were
originally stated without proof in [21].

Lemma 2. For M ∈ R>0, γ, φ ∈ R≥0 , h(x0) ∈ [−γ,M ],
and K ∈ N≥1, the function Ψ1 : (1,∞) → R defined as:

Ψ1(θ) =
M − h(x0) +

φθ
θ−1

(
θK − 1

)
(M + γ)θK

, (57)

is monotonically decreasing.

Proof: The geometric series identity yields:

Ψ1(θ) =
M − h(x0)

M + γ
θ−K +

φ

(M + γ)

K∑
i=1

θi−K , (58)

dΨ1

dθ
= −M − h(x0)

M + γ
Kθ−K−1 − φ

K∑
i=1

(K − i)θi−K−1

M + γ
,

≤ 0, (59)

for all θ ∈ (1,∞).

Lemma 3. For M ∈ R>0, γ, φ ∈ R≥0, h(x0) ∈ [−γ,M ],
and K ∈ N≥1, the function Ψ2 : (1,∞) → R defined as:

Ψ2(θ) = 1− h(x0) + γ

M + γ + φθ
θ−1 (θ

K − 1)
, (60)

is monotonically increasing.

Proof: The geometric series identity yields:

Ψ2(θ) = 1− h(x0) + γ

M + γ + φ
∑K

i=1 θ
i
, (61)

dΨ2

dθ
=

(h(x0) + γ)
(
φ
∑K

i=1 iθ
i−1
)

(
M + γ + φ

∑K
i=1 θ

i
)2 , (62)

≥ 0, (63)

for all θ ∈ (1,∞).

B. Lemma 1
Here we present a proof of Lemma 1.

Proof: Consider the convex, twice-continuously differ-
entiable function η : Rn → R defined as η = −h. The
intermediate value theorem implies that for all y, z ∈ Rn,
there exists an ω ∈ [0, 1] such that:

η(z) = η(y) +∇η(y)⊤e+ 1

2
e⊤∇2η(c)e, (64)

where e ≜ z − y, c ≜ ωz + (1 − ω)z, and ∇2η(c) is the
Hessian of η evaluated at c. We then have that:

η(z) = η(y) +∇η(y)⊤e+ 1

2
tr
(
∇2η(c)ee⊤

)
, (65)

≤ η(y) +∇η(y)⊤e+ 1

2
∥∇2η(c)∥2tr

(
ee⊤

)
, (66)

≤ η(y) +∇η(y)⊤e+ λmax

2
tr
(
ee⊤

)
, (67)

where the first inequality is a property of the trace operator
for positive semi-definite matrices [28] (and ∇2η(c) is positive
semi-definite as η is convex), and the second inequality follows
by our definition of λmax. Let x be a random variable taking
values in Rn with probability density function p : Rn → R≥0,
and let µ ≜ E[x]. We then have that:

E[η(x)]− η(E[x]) =
∫
Rn

(η(x)− η(µ))p(x)dx, (68)

≤
∫
Rn

∇η(µ)⊤e+ λmax

2
tr
(
ee⊤

)
p(x)dx, (69)

=
λmax

2
tr(cov(x)), (70)

where e = x− µ. Replacing η with −h yields:

E[h(x)] ≥ h(E[x])− λmax

2
tr(cov(x)). (71)

C. Derivation of Convex Approximation for Polytopic Barrier
Here we derive a conservative approximation of the con-

straint E[h(xk+1)] ≥ αh(xk) for barriers of the form h(x) =
−max(Cx−w) and systems with linear-Gaussian dynamics
(53). The key idea is to use the log-sum-exp function as a
smooth, convex upper bound of the pointwise maximum in
the barrier function, which yields a closed-form expression
for Gaussian random variables.

In particular, if L is the log-sum-exp function, for any t > 0,
max(x) ≤ 1

tL(tx) ≜
1
t log(

∑n
i=1 exp(txi)) [13, Chapter 3].

We can use this to upper bound the expectation of −h,

−E[h(xk+1)] = E [max(Cxk+1 −w)] (72)

≤ 1

t
E
[
L
(
t(Cxk+1 −w)

)]
(73)

≤ 1

t
log

(
nc∑
i=1

E [exp(tri)]

)
, (74)

for ri ≜ cTi x − wi, where ci is the ith row of C, wi is the
ith entry of w, and the last inequality follows from Jensen’s
inequality and the concavity of the natural logarithm. Further,
since we have linear-Gaussian dynamics, it is easy to show
that ri ∼ N (cTi (Axk +Buk)− wi, c

T
i Qci). The expression

E[exp(tX)] is the “moment-generating function” of a random
variable X, and for a Gaussian r.v. X ∼ N (µ, σ2), it has a
closed form, E[exp(tX)] = exp(tµ+ t2

2 σ
2) [34, Chapter 6].

Thus, for µ ≜ C(Axk + Buk) −w, σ ≜ diag(AQAT ),
where diag(·) defines the diagonal of a square matrix,

−E[h(xk+1)] ≤
1

t
L

(
tµ+

t2

2
σ

)
, (75)

which implies that imposing the constraint 1
tL(tµ + t2

2 σ) ≤
−αh(xk) ensures that the stochastic barrier condition (40) is
satisfied. Finally, recognizing that our constraint is a perspec-
tive transform of L(µ+ t

2σ) by the scalar 1
t , which preserves

convexity [13, Chapter 3], our constraint is indeed convex.
Thus an optimization-based controller such as ED can be used
online to select control actions, and can jointly optimize over
uk, t to obtain the tightest bound on the expectation possible.
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