
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Efficient Reinforcement Learning for Autonomous
Driving with Parameterized Skills and Priors

Letian Wang1, Jie Liu2, Hao Shao3, Wenshuo Wang4, Ruobing Chen3, Yu Liu2,3,†, Steven L. Waslander1

1University of Toronto, 2Shanghai Artificial Intelligence Laboratory, 3SenseTime Research, 4McGill University

Abstract—When autonomous vehicles are deployed on public
roads, they will encounter countless and diverse driving situ-
ations. Many manually designed driving policies are difficult
to scale to the real world. Fortunately, reinforcement learning
has shown great success in many tasks by automatic trial
and error. However, when it comes to autonomous driving in
interactive dense traffic, RL agents either fail to learn reasonable
performance or necessitate a large amount of data. Our insight is
that when humans learn to drive, they will 1) make decisions over
the high-level skill space instead of the low-level control space
and 2) leverage expert prior knowledge rather than learning
from scratch. Inspired by this, we propose ASAP-RL, an efficient
reinforcement learning algorithm for autonomous driving that
simultaneously leverages motion skills and expert priors. We
first parameterized motion skills, which are diverse enough
to cover various complex driving scenarios and situations. A
skill parameter inverse recovery method is proposed to convert
expert demonstrations from control space to skill space. A
simple but effective double initialization technique is proposed
to leverage expert priors while bypassing the issue of expert
suboptimality and early performance degradation. We validate
our proposed method on interactive dense-traffic driving tasks
given simple and sparse rewards. Experimental results show that
our method can lead to higher learning efficiency and better
driving performance relative to previous methods that exploit
skills and priors differently. Code is open-sourced to facilitate
further research.

I. INTRODUCTION

Autonomous vehicles (AVs) on public roads will interact
with other agents in various driving scenarios and situations
characterized by traffic densities, road geometries, and traf-
fic rules [47]. Many existing decision-making frameworks
are based on elaborate hand-designed rules and decision
hierarchies [6, 49]. Nonetheless, the joint consideration of
multiple vehicles scales exponentially in dense traffic and
is usually computational resource-hungry. Further, it can be
challenging to design rules manually to cover all safety-
critical cases, leading to severe generalizability issues. For-
tunately, reinforcement learning (RL) requires little human
labor in identifying policies across multiple different tasks by
automatically interacting with the environment [40, 43, 21].
However, when it comes to an interactive multi-vehicle setting
with a continuous action space, the learning efficiency of RL
algorithms remains notoriously low because RL agents either
fail to learn reasonable performance or necessitate a large
amount of data and resources to make significant progress.

†Corresponding author. liuyuisanai@gmail.com
First author contact: lt.wang@mail.utoronto.ca

(a) RL in control space VS skill space

(b) RL over parameterized skill space

(c) RL exploiting expert priors

expert-prior exploration spacewhole exploration space

Mean
Variance

Lat. Yaw
Vel. Accel.

Motion Skill Parameters

Parameter Argument

Control
Space

Skill
Space

Fig. 1: (a) RL-based AVs learning over the control space will
exhibit inconsistent action sequences. In comparison, RL over
the skill space can generate a sequence of consistent low-level
actions with more informative exploration and accelerated
reward signaling. (b) The parameterized motion skill provides
a key interface for RL agents to explore and learn. (c) The
expert demonstration can provide prior knowledge of which
regions of the action space are more promising in getting
rewards than others, which can accelerate learning.

One great insight to improve learning efficiency is that,
there can be different choices of the action space for the
RL agent, and a proper choice or design of the action space
can significantly simplify learning [23]. Most existing RL
methods directly learn over vehicles’ control space, such
as the steering and the pedal commands of one time step
[39, 3, 28]. However, a sequence of single-step control signals
with inconsistent exploration rarely achieves typical driving
maneuvers and lacks informative reward signals for the agent
to learn. For example, as shown in the upper part of Fig. 1(a),
the orange vehicle might move erratically when exploring the
control space, thereby failing to achieve driving maneuvers
such as overtaking a leading car. Such agents with frequent
failures rarely receive informative reward signals for the agent
to improve. In contrast, behavioral science has revealed that

https://github.com/Letian-Wang/asaprl

human behavior is naturally temporally hierarchical [12, 2, 7]:
humans learn and make decisions over abstracted high-level
options, which we call motion skills, while the low-level
control commands are not an action space to learn but simply a
sequence of muscle responses/executions to achieve high-level
motion skills. As shown in the lower part of Fig. 1(a), a se-
quence of consistent low-level control commands is generated
correspondingly after the driver decides to perform the motion
skill of overtaking a lead vehicle. Such temporally-extended
motion skills enable efficient learning through structured ex-
ploration and improved reward signaling.

However, proper design and learning of motion skills are
non-trivial. There are two main ways to define and learn
the motion skills in autonomous driving and robotics: (1)
Manually designing delicate task-specific or object-centric
motion skills [46, 5, 4, 48, 14, 31, 44], such as merging
into a target lane before a car. However, such task-specific or
object-centric motion skills are usually too complex to design
manually for autonomous driving in multi-agent dense-traffic
settings, nor can such delicately-designed motion skills cover
the wide variety of driving and interaction situations that arise.
(2) Extracting or learning motion skills from offline motion
datasets, such as clustering or segmenting motion trajectories
[15, 33, 30], or distilling offline motions into low-dimension
latent space [29, 24, 25]. However, motion datasets are usually
unbalanced in distribution and lack diversity, making it hard
to learn all the needed skills. Inspired by motion planning
in autonomous driving, we propose to exploit motion skills
in the pure ego vehicle motion view, which is diverse and
thus generalizable to complex driving tasks. Fig. 1(b) depicts
that with such naturally-parameterized motion skills, AVs can
directly learn over the parameters of motion skills with little
design effort.

In addition to using motion skills, the other widely-
recognized attempt to improve learning efficiency is leveraging
prior knowledge from expert demonstrations. The critical
insight is that the value of the whole exploration space is not
uniform. Some regions of the action space are more promising
in getting rewards than others. As shown in Fig. 1(c), it would
be more rewarding for the vehicle to run in the left-front
direction with sparse traffic than in the right-front direction
with dense traffic. Many works integrate such expert prior
knowledge by utilizing expert demonstrations to initialize the
RL agent [20, 10, 19, 27, 32] and/or training an expert
policy based on expert demonstrations to guide reinforcement
learning as a regularizer or reward term [29, 34, 21]. However,
simultaneously leveraging the expert’s prior knowledge and
the parameterized motion skills is non-trivial, since most
expert demonstrations only include control information but
miss skills or rewards annotation. To this end, we propose
an inverse optimization method to recover the corresponding
motion skill parameters given expert demonstrations using
sequential quadratic programming (SQP) [16]. Thus, we can
convert the expert demonstration from control space to skill
space, allowing us to take advantage of both skills and priors
simultaneously.

While actor pertaining [20, 10, 19, 27, 32] and expert
regularization [29, 34, 21] have been widely used in previous
methods to leverage expert priors, such methods could either
suffer from performance drop at early training iterations due to
actor/critic mismatch or performance suppression due to expert
suboptimality. To this end, we propose a simple but effective
double initialization method. We first pretrain the actor with
the expert demonstration in skill space, then pretrain the critic
by rolling out the pretrained actor to collect expert demonstra-
tions with reward and skill information. We will show how this
simple but effective double initialization method can bypass
the issue of suboptimality and initial performance drop.

In summary, the contributions of the proposed ASAP-RL
(RL with pArameterized Skills and Priors) are threefold:

• Propose an RL method to learn over the parameter
of motion skills for more informative exploration and
improved reward signaling. Such skills are defined in
the ego vehicle motion view, which are diverse and thus
generalizable to different complex driving tasks.

• Propose an inverse skill parameter recovery method to
convert expert demonstration from control space to skill
space, and a simple but effective double initialization
method to better leverage expert prior without issues
of performance drop or suppression. Thus we can take
advantage of both skills and priors simultaneously.

• Validate our method for autonomous driving tasks in three
challenging dense-traffic scenarios and demonstrate our
method outperforms previous methods that consider skills
and priors differently.

II. RELATED WORKS

In this section, we will discuss related works on reinforce-
ment learning with skills and priors, with a focus on au-
tonomous driving and robotics. To the best of our knowledge,
we are the very first to simultaneously leverage skills and ex-
pert priors to improve reinforcement learning for autonomous
driving. Moreover, our proposed skill representation is motion-
centric, not task-centric, implying that it can be flexibly
extended to navigation for other moving robots, such as for
mobile robots, UAVs, and the end-effector of manipulation
robots, by accordingly modifying the dynamic constraint of
the skill. Our proposed skill recovery and double-initialization
method is flexible to leverage prior knowledge for general
robot embodiment. We believe the proposed method could help
to close the gap between skill and priors, and spark further
research in this direction.

A. Reinforcement Learning with Skills

Toward defining or getting the skill that can be exploited in
reinforcement learning for autonomous driving and robotics,
two main approaches exist: (1) manually designing task-
specific or object-centric motion skills [46, 5, 4, 48, 14, 31],
such as cutting in a target lane before a specific car, or
grasping a specific object. However, when AVs run on actual
roads, a dense-traffic setting, AVs’ motion usually should
be synthesized considering relationships between multiple

Skill Parameter
Inverse Recovery

Critic Network
Q (𝐬𝐬,𝜽𝜽)

Lat.
Yaw
Vel.

Accel.

Skill
Mean

Variance

Actor Network
𝝅𝝅(𝜽𝜽|𝐬𝐬)

Rollout

Skill Parameter Recovery and Prior Learning RL with parameterized skill and expert priors

Initializing

Initializing

Parameterized
Skill Generation

𝑿𝑿 = 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑻𝑻

Demonstrations in skill space

𝒟𝒟𝜽𝜽 = {(𝒔𝒔𝒊𝒊,𝜽𝜽𝒊𝒊)}

Demonstrations with skill and
reward information

𝒟𝒟𝜽𝜽′ = {(𝒔𝒔𝒊𝒊,𝜽𝜽𝒊𝒊, 𝒔𝒔𝒊𝒊′, 𝒓𝒓)} 𝒟𝒟𝜽𝜽 = {(𝒔𝒔𝒊𝒊,𝜽𝜽𝒊𝒊)}

Demonstrations in control space

𝓓𝓓𝒖𝒖 = {(𝒔𝒔𝒊𝒊,𝒖𝒖𝒊𝒊)}

Demonstrations in control space

Demonstrations with skill and
reward information

𝒟𝒟𝜽𝜽′ = {(𝒔𝒔𝒊𝒊,𝜽𝜽𝒊𝒊, 𝒔𝒔𝒊𝒊′, 𝒓𝒓)}

Actor Network
𝝅𝝅(𝜽𝜽|𝐬𝐬)

Critic Network
Q (𝐬𝐬,𝜽𝜽)

StatePretrain

Pretrain

Fig. 2: The pipeline of the proposed ASAP-RL method. An inverse skill parameter recovery method is proposed to convert
expert demonstration from control space to skill space. A double initialization method is introduced to initialize both actor
and critic to inject the expert’s prior knowledge into RL. The RL agent can learn and explore in the skill space instead of the
control space while leveraging the expert priors, which leads to high learning efficiency and improved final performance.

surrounding vehicles, which is usually too complicated to
design manually. With limited flexibility and expressiveness,
such manually-designed skills can hardly cover diverse driving
and interaction situations. (2) another approach is to extract or
learn skills from offline motion datasets, such as clustering or
segmenting motion skills [15, 33, 30], or distill offline motions
into low-dimension latent space [29, 24, 25], so that the issues
and labor of manual design can be bypassed. However, such
datasets can be expensive and labor-intensive to collect if they
are not already available. It would also be difficult for such
learned skills to transfer to new tasks or environments as they
are usually task-specific and conditioned on the environment.
Moreover, it is also not guaranteed that all necessary skills
are covered in the datasets as they are usually unbalanced in
distribution and sub-optimal. To tackle the limitations above,
one recent work [50] combines the two approaches by first
building a task-agnostic and ego-centric motion skill library in
a pure ego vehicle motion perspective and then encoding the
motion skills into a low-dimension latent skill space. However,
the skill library construction still requires considerable effort,
and the latent space encoding further makes the decision-
making less interpretable. Thus, in this work, we propose to
directly learn over the skill parameter space instead of the
latent space, to spare the efforts in skill library construction,
enable more interpretability in the decision-making process,
and also provide an parameterized interface to further leverage
priors.

B. Reinforcement Learning with Expert Priors

Although RL has been shown to be effective in several
problems, learning efficiency issues [11] limit its applica-
tions. Inspired by human decision-making processes where
prior knowledge is quite helpful when we learn new tasks,
many works use expert prior knowledge to avoid learning
from scratch with exhaustive interactions. There exist three
approaches to leveraging prior knowledge: (1) utilize expert

demonstration for a warm-up pretraining or policy (actor)
initialization before RL [20, 10, 19, 27, 32]; (2) train an expert
policy based on expert demonstrations, which is then used to
guide RL process [29, 34, 21]; (3) maintain an expert data
buffer, which is mixed with interaction buffer during RL for
more fruitful experiences [20, 10, 27, 32, 42, 26, 22]. The
first method is effective in policy-based RL methods but only
initializing the actor was reported to be not helpful in the actor-
critic framework [29]. This is because the actor and critic are
interacting with each other during the learning process, and
the actor’s objective is to maximize the Q-value output by
the critic without pretrianing. Thus, the actor could quickly
lose the prior knowledge learned from the expert after several
updates. Empirically, we found performance drops can happen
at early training iterations when adopting the first method
(see Section IV-C2). The second and third methods use expert
priors as guidance during RL training but might suppress the
performance when the expert performance is suboptimal [34].
To overcome the limitations of the three methods, we propose
a ‘double initialization’ technique with both the actor and critic
initialized simultaneously and demonstrate this approach can
achieve strong performance even when a suboptimal expert is
employed.

III. APPROACH

Let the Markov Decision Process be defined as
{S,A, T ,R, γ}, a tuple of states, actions, transition
probabilities, rewards, and discount factor. Our goal is to
leverage parameterized motion skills and priors to accelerate
reinforcement learning in continuous space for autonomous
driving in dense traffic settings. Fig. 2 illustrates the
architecture of our method, and Algorithm 1 outlines the
pipeline. In this section, we first define the parameterized
motion skill, which is defined in pure ego vehicle motion view
and thus generalizable to different driving scenarios. Then

the RL agent only needs to focus on the high-level decision-
making task by learning over the skill parameter space, and
the low-level motion control task is handled by generating
the motion trajectory from the skill parameters. To further
utilize priors in expert demonstrations Du = {(si, ui)}, which
only include state si and control action ui but lack skill or
reward information, we proposed an inverse optimization
process to recover skill parameters θi, constructing the expert
demonstrations in skill space Dθ = {(si,θi)}. In a maximum
entropy actor-critic framework, we propose a simple but
effective ‘double initialization’ method to pretrain both the
actor and critic, which can bypass the issue of suboptimality
and early performance drop when leveraging experts prior.
With these methods, we can leverage the parameterized skill
and prior simultaneously.

A. Motion Skill Generation

Inspired by the sampling-based motion planning [18, 8, 45],
we first introduce the parameterized motion skill. Defined
in a pure ego-motion perspective, such motion skills are
task-agnostic and ego-centric and can cover diverse motions
needed in dense-traffic settings, which can be generalizable
to different scenarios. Technically, the beginning boundary of
the motion skill is determined by the vehicle’s current state,
and one motion skill further necessitates four parameters of
the end boundary i.e., the lateral position ye, heading angle
ϕe, speed ve, and acceleration ae at the end of the motion
skill. RL agents can learn and explore these parameters to
generate diverse motion skills. Given the skill parameters, the
generation of one motion skill consists of three steps, as shown
in Fig. 3: (a) path generation, generating future path on the
road, (b) speed profile generation, specifying the variation of
speed in the skill time window, and (c) trajectory (motion skill)
generation, projecting the integral of the speed profile onto the
path to generate motion trajectory. All details are introduced
below.

Path Generation. The path is generated by connecting the
origin and an endpoint on the road by cubic splines, in the
ego vehicle’s coordinate system. The endpoint is characterized
by three parameters: longitudinal position xe, lateral position
ye, and heading angle ϕe. To ensure feasible speed-to-path
projection, the path length should be longer than the integral
of the speed profile. We thus fix the longitudinal position of
the endpoint as the longest distance the ego vehicle can reach
within the skill time window T . Therefore, the path generation
consists of two free parameters the RL agent needs to learn: the
lateral position ye and heading angle ϕe of the endpoint, which
can cover diverse lateral driving intentions and maneuvers,
such as lane keeping, overtaking, and cutting-in.

Speed Profile Generation. The speed profile is represented
by a cubic polynomial in the time horizon [0, T], parameter-
ized by the speed v and acceleration a at the beginning and
end of the time horizon. When generating the speed profile,
we specify the speed and acceleration at the beginning time by
the vehicle’s current state. Thus, the speed profile generation
phase provides two free parameters that the RL agent needs to

(a) Path Generation

𝝓𝝓𝒆𝒆
𝒚𝒚𝒆𝒆

La
t (

m
)

Lon (m)

(b) Speed Profile Generation

Sp
ee

d
(m

/s
)

Time (s)𝑡𝑡𝑡𝑡𝑡𝑡
𝑣𝑣1

𝑣𝑣𝑘𝑘

𝑣𝑣𝑇𝑇 = 𝒗𝒗𝒆𝒆

𝑣𝑣0

𝒂𝒂𝒆𝒆

(c) Trajectory (Motion Skill) Generation

𝐱𝐱0
𝐱𝐱1

𝐱𝐱𝑘𝑘

𝐱𝐱𝑇𝑇

𝑡𝑡 𝑡𝑡 𝑡𝑡

La
t (

m
)

Lon (m)

𝑎𝑎0

Fig. 3: An illustration of parameterized motion skill generation
process. One motion skill is determined by four skill param-
eters (shown in blue color) that RL agents directly learn and
explore. (a) The path is generated by connecting a start point
and an endpoint (parameterized by the lateral position ye and
heading angle ϕe of the endpoint) by the cubic polynomial. (b)
The speed profile is represented by a cubic polynomial within
the time window T , which is parameterized by the speed v0
and acceleration a0 at the beginning time and ve and ae at the
end time. (c) Motion skill generated by projecting the integral
of the speed profile onto the path.

learn: the speed ve and acceleration ae at the end time, which
can cover diverse temporal intentions, such as accelerating,
decelerating, and emergent stop.

Parameterized Motion Skill Generation. Given the path
and speed profile, the motion skill is generated by projecting
the integral of the speed profile onto the path. Each motion
skill is a sequence of vehicle states X = [x1,x2, ...,xT], with
each state as a tuple xt = {xt, yt, ϕt, vt, at}.

Note that each skill generation is conditioned on the vehi-
cle’s current state, which is the final state of the last executed
skill, which ensures smoothness between skill segments. The
dynamic constraint (acceleration, curvature) is also enforced
by restricting the planning parameters in reasonable ranges.

B. Skill Parameter Recovery

Another way to accelerate RL is by leveraging prior
knowledge from expert demonstrations. However, most expert
demonstrations Du = {(si, ui)} are in control space and do
not contain the skill and reward information, making it not
readily usable. We propose an inverse parameter recovery pro-
cedure to annotate expert data with skill parameters and con-
struct the expert demonstration in skill space Dθ = {(si,θi)}.

Consider the motion skill generation (see Section III-A) as
a forward process, where one motion skill X is generated
given skill parameters θ. Then the skill parameter recovery
can be regarded as an inverse procedure, where θ are deter-

mined given one demonstrated motion skill Xd. Practically,
the motion skills are retrieved by sequentially splitting the
demonstration trajectory into segments, each with a length of
T . Formally, this recovery process can be formulated as

θ =argmin
θ
||Xd −X||2

s.t. X = fs(θ)
(1)

where fs denotes the motion skill generation process in
Section III-A. Specifically, we use the sequential quadratic
programming (SQP) [16] as the optimization method. For
each motion skill, we run the optimization process multiple
times with different skill parameter initializations to mitigate
issues of local optima and achieve better recovery accuracy.

C. Expert Prior Learning - Actor and Critic Pretraining

With the expert demonstration in skill space Dθ =
{(si,θi)}, we can leverage the skill and expert prior simulta-
neously in RL. In this paper, we modify the maximum-entropy
RL to do so. Specifically, we adopt the Soft Actor-Critic
framework (SAC [9]), which consists of an actor π(θ|s) for
policy improvement and a critic Q(s,θ) for policy evaluation.
This section will introduce how the two networks can be
pretrained to capture expert priors.

Actor Pretraining To leverage the expert demonstration in
skill space Dθ as priors, we first pretrain an actor π(θ|s) to
capture the skill priors conditional on the current state. The
training of this model aims at maximizing the log probability
of the recovered expert skill parameter in the distribution
output by the actor:

E(s,θ)∼Dθ

[
log π(θ|s) + βH(θ)

]
(2)

where for each data (s,θ) in the expert demonstration Dθ,
the pretrained actor π(θ|s) takes the current state s as inputs
and outputs the Gaussian distribution of the skill parameters
θ. H(θ) denotes the entropy regularization term and β de-
notes entropy weight. The pretrained actor can provide prior
knowledge on which skills are more promising to explore
conditioning in the current situation.

Critic Pretraining Since the actor and critic interact with
each other during RL training, only pretraining the actor does
not fully leverage the prior knowledge. However, pretraining
the critic Q(s,θ) is not always available since there is no
reward information in the expert demonstration in either
control space Du or skill space Dθ. Fortunately, we already
have the pretrained actor who has learned expert priors. Thus
we propose to roll out the pretrained actor in the environment
to collect an expert demonstration with both skill and reward
information D′

θ = {(si,θi, s
′
i, r)}, which is then used to

pretrain the critic Q(s,θ). The pretaining of the critic follows
typical policy evaluation in SAC, as in Line 38 of Algorithm 1.
As in Sec IV-C2, we will discuss in detail how the simple
but effective double initialization method can outperform other
methods to incorporate expert priors.

Algorithm 1 ASAP-RL

1: Input: Raw demonstrations Du, discount γ, target entropy
δ, learning rates λπ, λQ, λα, target update rate m, temper-
ature hyperparameter α, motion skill model fs

2: Require: actor πφ(θt|st), critic Qϕ(st,θt), target network
Qϕ̄(st,θt), replay buffer D, demonstration in skill space
Dθ, demonstration with skill and reward information D′

θ.
3: Skill Parameter Recovery
4: for each trajectory in Du do
5: for every Xd split from the trajectory do
6: θ = argmin ||Xd − fs(θ)||p (Eq 1)
7: Dθ ← Dθ ∪ {(s,θ)}
8: end for
9: end for

10: Prior Learning
11: for each iteration do % Actor Pretraining
12: Sample (s,θ) from Dθ

13: Update πφ according to Eq 2
14: end for
15: for each iteration do % Roll-out πφ to Collect D′

θ

16: for every T environment step do
17: rollout pretrained actor to collect {st,θt, r̃, st′}
18: D′

θ ← D
′

θ ∪ {st,θt, r, st′}
19: end for
20: end for
21: for each iteration do % Critic Pretraining
22: Sample (s,θ, r, s′) from D′

θ

23: Update πφ according to Line 38
24: end for
25: RL with Parameterized Skills and Priors
26: Initialize actor and critic with the pretrained weight
27: for each iteration do
28: for every T environment step do
29: θt ∼ πφ(θt|st) % sample skill parameter
30: Xt = {xi}Ti=1 ∼ fs(Xt|θt) % generate skill
31: st′ ∼ p(st+T , rt:t+T |st,Xt) % execute skill
32: r̃t(st,θt) =

∑T−1
i=0 rt+i % reward calculation

33: D ← D ∪ {st,θt, r̃, st′} % replay buffer
34: end for
35: for every gradient step do % typical SAC training
36: Q̄ = r̃(st,θt) + γ

[
Qϕ̄(st′ , πφ(θt′ |st′))− αH

(
πφ(θt′ |st′)

)]
37: φ← φ+ λπ∇φ[Qφ(st, πφ(θt|st)) + αH

(
πφ(θt|st)

)
]

38: ϕ← ϕ− λQ∇ϕ

[
1
2

(
Qϕ(st,θt)− Q̄

)2]
39: α← α− λα∇α

[
α · ((H

(
pθ(θt|st)− δ)

]
40: ϕ̄← mϕ+ (1−m)ϕ̄
41: end for
42: end for

D. RL over parameterized skill with priors

To simultaneously leverage parameterized motion skill and
expert priors for higher learning efficiency, we modify the
maximum-entropy RL, whose objective function is to encour-

age reward maximization and exploration in skill space:

J = Eπ

[T∑
t=1

γtrt + αH
(
π(θ|s)

)]
(3)

where
∑T

t=1 γ
trt denotes the accumulated discounted reward

return from the environment after one motion skill of length
T is executed, H

(
π(θ|s)

)
denotes the entropy term, and α

denotes the temperature parameter. Instead of learning a policy
over raw control actions π(u|s) at a single time step, we learn
a policy that outputs skill parameters, π(θ|s), which is then
used to generate a motion skill by the procedure defined in
Section III-A. Each motion skill is tracked for T time steps
before the next skill is generated, which follows a typical semi-
MDP process [41, 1] with temporal abstraction and accelerated
reward signaling [24, 25, 21]. The time horizon, T , is fixed
and consistent with the motion skill length in Section III-A
and Section III-B. While some works investigated variable-
length policy conditional on the task and environment [30,
13, 37], we empirically found a fixed-length policy can achieve
strong performance and leave the extension to dynamic-length
policies to future work. On top of parameterized motion skills,
we adopt the double initialization method to further leverage
priors, where we initialize the actor and the critic with the
pretrained weight in Section III-B.

IV. EXPERIMENTS

In this section, we will investigate the following sub-
problems to evaluate our proposed ASAP-RL method:
• Performance: Can our method learn driving strategies with

higher learning efficiency and performance than other meth-
ods considering skills and priors differently? (Fig. 5)

• Influence of the length of skill: The length of motion skill
T is an important hyper-parameter. How does it influence
the performance of our ASAP-RL? (Fig. 6)

• Influence of expert prior: Does the expert prior knowledge
accelerate RL? How does the proposed double initialization
perform with respect to other methods to incorporate expert
prior? (Fig. 7)

A. Experiment Setup

1) Environment: We evaluate ASAP-RL on the MetaDrive
simulator [17] under different dense-traffic scenarios (highway,
roundabout, and intersection) to verify its performance for
autonomous driving. At each run, the driving environment is
generated with a random lane number and a random order
of roadblocks. Traffic vehicles are spawned at a random
location with a random target speed, and these vehicles are
controlled by the default rule-based planner in MetaDrive.
The ego vehicle needs to navigate in the traffic and arrive
at the destination within the required time, without collisions
or running off the roadway. As shown in Fig. 4, we follow the
default setting in MetaDrive to use a 5-channel birds-eye-view
(BEV) image with a size of 200×200×5 as the input for the
RL agent, which includes spatiotemporal information of the
ego agent and surrounding agents, and the information of the

(a) (b) (c) (d) (e) (f)

Fig. 4: The birds-eye view (BEV) images used as the ob-
servation and policy input. (a) the current scene; (b) road
information (dashed line) and navigation lanes (in white color);
(c) historical waypoints of the ego vehicle; (d-f) surrounding
objects (white rectangles) at time t, t− 1, and t− 2.

road geometry and navigation. In practice, such observations
are usually available in modern autonomous driving perception
systems[38]. The focus of this paper is how to make decisions
efficiently and safely in diverse dense-traffic scenarios with
access to these observations. All experiments are run with
three different seeds.

2) Reward Definition: s We adopt the sparse reward setting
to enable minimum effort in reward engineering:

rt = Rprogress +Rdestination +Rcrash +Rovertaking. (4)

• Rprogress: The agent gets a sparse reward of 1 for every 10
m distance completed.

• Rdestination: The agent gets a reward of 1 if it reaches the
destination.

• Rcrash: If the agent collides with other vehicles or the road
curbs, it gets a negative reward of -5.

• Rovertaking: If the agent passes one vehicle, it gets a reward
of 0.1.
In the ASAP-RL pipeline, a motion skill step contains

T simulation steps, where each step lasts for 0.1 seconds.
When the simulator performs one motion skill, it performs
T simulation steps and gets rewards T times. Therefore, the
skill reward will be the sum of T -step rewards, as shown in
Line 32 of Algorithm 1. We empirically found our method
performed well even without Rdestination in the highway and
roundabout environments.

3) Expert Demonstration Collection: We have two options
to collect expert demonstrations, one hand-designed rule-based
expert planner, and one trained RL expert agent. The rule-
based planner achieved higher performance than the RL expert
agent after time-consuming manual tuning. However, the rule-
based planner option required more designs in data collection
(e.g. perturbance to the expert actions) to collect more diverse
and react-to-danger actions, without which the agent trained
from the demonstration will fail due to error accumula-
tion [35]. In comparison, we found the trained RL expert agent
can collect high-quality and more diverse demonstrations, and
agents trained from such demonstrations achieved stronger
performance. Thus we opt for the RL expert agent for data
collection. In the future, the expert demonstrations can also
be retrieved by human driving data, if available.

4) Baselines: We compare the performance of our ASAP-
RL with the following baselines:
• PPO [36]: Train an agent from scratch by Proximal Policy

Optimization, a typical single-step on-policy algorithm.

Highway

Intersection

Roundabout

PPO SAC Constant SAC TaEcRL ASAP-RL (Ours)SPIRL

Evaluation Stage 1 Evaluation Stage 2 Evaluation Stage 3

Fig. 5: Comparison of our method with baselines on the highway, intersection, and roundabout scenarios. PPO and SAC are
classical RL algorithms over control space. Constant SAC repeats the same action for the skill horizon T . SPiRL and TaEcRL
learn in low-dimension latent skill space and SPiRL also leverages expert priors. As detailed in Sec. IV-A6, the performance
evaluation follows three stages to gradually distinguish the differences between methods with increasingly more specific metrics:
1) reward; 2) success rate, and road completion ratio; 3) collision rate, and passed car per episode. We only need to inspect
metrics in later stages when the methods perform similarly in previous stages. The methods that are outperformed by other
methods in previous evaluation stages are marked as dashed lines in later stages. Our ASAP-RL outperforms all other methods,
and the margin between ASAP-RL and other methods increases as we move from stage 1 to stage 3.

• SAC [9]: Train an agent from scratch with Soft Actor-Critic,
a typical single-step off-policy algorithm.

• Constant SAC: Train an agent from scratch with SAC,
whose action is repeated T times (the same as the skill
horizon of ASAP-RL). This method verifies the performance
of simply temporally extending actions from one-step to
multi-step without skill design.

• SPiRL [29]: Train an agent with the Skill-Prior RL al-
gorithm, which leverages both skills and priors in the
expert demonstration. SPiRL first embeds skills from the
demonstration into a low-dimension latent skill space, where
the RL agent can learn and explore efficiently. SPiRL then
trains a skill prior network using the expert demonstrations,
which is utilized as a KL divergence term to guide the RL
agent and prevent deviation from the expert policy. Since the
open-source code of SPiRL does not include the MetaDrive
environment, we reproduced SPiRL in our codebase.

• TaEcRL [50]: Train an agent with task-agnostic and ego-
centric motion skills. The difference between TaEcRL and

SPiRL lies in a) TaEcRL learns latent skill space through the
task-agnostic and ego-centric motion skill library proposed
by TaEcRL, while SPiRL directly learns latent space from
collected expert data with limited skill diversity; b) SPiRL
leverages expert priors but TaEcRL does not.

5) Evaluation metric: To compare the performance of
ASAP-RL with other methods, we adopt the following metrics,
which reflect the performance of autonomous vehicles from
different aspects:

• Episode Reward: the sum of all the rewards in an episode.
• Success Rate: the percentage of episodes where the agent

reaches the destination on time without collisions.
• Road Completion Ratio: the ratio of road length completed

by the agent to the total road length per episode.
• Collision Rate: the percentage of episodes in which a

collision occurs.
• Passed Cars Per Episode: the number of cars overtaken by

the agent in each episode.

1 5 10 (Ours)Skill Length 20

Evaluation Stage 1 Evaluation Stage 2 Evaluation Stage 3

Fig. 6: Ablation analysis of skill length in the roundabout scenario. When T increases from 1 to 10, performance improvement
is observed, benefiting from temporal abstraction. But when T reaches 20, it is too long for the agent to react to accidents
during the skill execution due to delayed replanning. We observe that a skill length of 10 reached a good trade-off.

No Prior Initiate actor KL + Initiate actor Initiate actor + critic (Ours)BC

Evaluation Stage 1 Evaluation Stage 2 Evaluation Stage 3

Fig. 7: Ablation analysis of different ways to incorporate expert priors in the roundabout scenario. Our method has a good
starting performance and reached the highest final performance without a performance drop in early training iterations (’Initiate
actor’) or performance suppression due to the expert suboptimality (’KL + Initiate actor’).

6) A three-stage strategy for performance evaluation:
During the evaluation, the metrics above should be combined
and sequentially inspected, since they evaluate the driving per-
formance from different aspects and granularity. For example,
a high passed-car-per-episode represents a good agent only
when the agent also remains a decent success-rate and road-
completion-ratio, and a reasonably low collision-rate. Thus
we propose a three-stage strategy to evaluate the methods’
performance, where we only need to inspect metrics in later
stages when the methods perform similarly in metrics of
previous stages:

• Stage one Since the reward is the direct optimization
objective in RL, it can straight-forwardly reflect the
performance of an algorithm. Therefore, in the first stage,
we treat reward as the most important evaluation metric.

• Stage two Sometimes it can be difficult to distinguish
methods on the reward metric alone. In this case, we
move to the second stage focusing on other metrics with
more driving contexts, namely the success rate, and the
road completion ratio.

• Stage three If the performance on previous metrics is
still close, we move to the third stage and focus on the
collision rate and passed car per episode. The two metrics
are somewhat trade-offs between each other. The passed
car per episode has the smallest reward weight and can

better distinguish the methods’ performance.

B. Performance Comparison

We follow the proposed three-stage strategy to evaluate
the performance of baselines and our method. As illustrated
in Fig. 5, the reward metric in the first evaluation stage
indicates that the performance of PPO, SAC, and SPiRL is
significantly lower than that of the other three methods. Zhou
et al. [50] reported that PPO and SAC had poor performance in
MetaDrive tasks even under dense reward settings, so it is not
surprising that the performance is poor under the more difficult
sparse reward conditions used in this work. Though SPiRL was
shown to be effective in manipulation tasks [4, 29], it performs
poorly in our driving setting, likely due to the fact that the
driving task requires very diverse skills while SPiRL can
only learn skills from limited expert demonstrations: since the
expert demonstrations of driving tasks are usually unbalanced
to mostly consist of data where the vehicle is driving forward,
it is hard to ensure that all essential skills are learned or
covered in SPiRL agent. We empirically found that the agents
learned with SPiRL mostly drive straight forward and can
barely exhibit maneuvers, leading to a high collision rate.

The constant-SAC, which simply repeats the same action in
the skill window T , obtains a slightly lower reward in the three
scenarios compared to TaEcRL and ASAP-RL. However, when
we move to the second/third evaluation stage and focus on the

detailed driving-context metrics, the Constant-SAC performed
much worse than TaEcRL and ASAP-RL: the constant-SAC
agent drives very conservatively and slowly to avoid collisions.
Though a low collision rate and a decent road completion ratio
are achieved, the agent usually cannot arrive at the destination
within the given time, which leads to a close-to-zero success
rate and passed cars per episode. Thus it is not a good driving
strategy and shows the importance of proper skill design.

Finally, we compare the results between TaEcRL and
ASAP-RL. ASAP-RL achieves better performance in the first
10k iterations in terms of all metrics due to the usage of the
expert prior. In addition, ASAP-RL has more passed cars per
episode than TaEcRL by a large margin, with better or similar
success rates, road completion ratio, and collision rates. This
is hypothetically because 1) our ASAP-RL can generate very
diverse skills by combining different skill parameters, while
TaEcRL relies on offline datasets and can only use limited
skills. For example, we found agents learned by TaEcRL
usually drive in an erratic way, leading to a low ability to
overtake. 2) ASAP-RL can leverage expert priors to accelerate
convergence and bias the agent toward better optima and
higher performance, due to our proposed skill parameter re-
covery and double-initialization method. In contrast, TaEcRL
is limited by its own algorithm design and cannot utilize expert
data. These results suggest ASAP-RL could be a useful tool to
enable autonomous driving in interactive, diverse dense-traffic
scenarios.

C. Ablation study

1) Influence of the length of skill: We ablate the skill
horizon parameter, T , on the roundabout scenario to examine
its influence. The results are shown in Fig. 6. When T = 1,
ASAP-RL degenerates into a single-step method with poor
performance. When T = 5 or T = 10, we observed a
performance improvement benefiting from making long-term
decisions. However, if T is too large (T = 20), during
the skill execution, an overly-long skill length can make
the agent less reactive to accidents and emergencies due to
delayed replanning. Moreover, the richness of the skill set
will be insufficient, and thus some driving strategies cannot
be covered. Overall, a skill length of T = 10 reached a good
trade-off.

2) Influence of expert prior: We conduct ablation studies on
the roundabout scenario to investigate the effect of the expert
prior and compare the proposed double initialization method
with other methods to incorporate the expert prior. As shown
in Fig. 7, we can distinguish their differences simply using the
reward metric in the first evaluation stage.
No Prior. No Prior has to learn from scratch with low
performance at the beginning with close-to-zero rewards, high
collision rates, and data collection costs. Though its perfor-
mance then goes up quickly, it fails to improve further. For
example, in the reward metric, No Prior is constantly lower
than our ASAP-RL at any training iteration, and the peak
reward of our ASAP-RL is 20% higher than that of No Prior.

These results demonstrate the effect of priors to bias agents
toward better optima and higher performance.
Behavior Cloning (BC). The BC method trains a policy using
expert demonstration without further reinforcement learning.
Technically, the training is the same as the actor pretraining
in our method as in Eq 2. Compared to ’No Prior’, the BC
method achieves better performance at the beginning but does
not improve further, so it has a lower final performance.
Initiate Actor. The ’Initiate Actor’ method uses the pre-
trained policy weight to initialize the actor in SAC, and then
continue with reinforcement learning. This method has a good
initial performance and continues to improve. However, there
is a performance drop in the first 5K iterations, likely due to
the mismatch between the actor and the critic: though the actor
is pretrained to have expert prior knowledge, the critic has no
knowledge of the prior. Because the actor needs to interact
with the critic during RL with the objective to maximize the
Q-value output by the critic, as in Line 37 of Algorithm 1, the
actor could quickly lose the prior knowledge learned from the
expert after several updates.
KL + Initiate Actor. In addition to actor initialization, the
‘KL + Initiate Actor’ method also measures the KL divergence
between the pre-trained actor and the RL actor during training.
The KL term was added into the objective function to replace
the original entropy term in SAC as in [29]. This is an
ablation setting that incorporates expert prior during the whole
RL training to guide the RL and prevent deviating from the
expert policy. However, similar to the results reported in [34],
the performance of the method is suppressed due to expert
suboptimality: though this method has a good starting point,
the reward is growing much more slowly than other methods
in later training.
Initiate Actor and Critic. This is our proposed method to
incorporate expert priors. Our ‘double initialization’ method
has a good starting reward and the highest final performance,
without the issue of performance drop caused to a mismatch
between actor and critic, or performance suppression due to
the expert suboptimality.

D. Visualizations

Visualizations of our ASAP-RL agent running on the three
scenarios can be found in Fig. 8. The agent drives in dense
traffic efficiently and safely with diverse maneuvers such as
lane changing, cutting in, braking, etc.

V. CONCLUSION

We present an efficient reinforcement learning (ASAP-RL)
that simultaneously leverages parameterized motion skills and
expert priors for autonomous vehicles to navigate in complex
dense traffic. We first introduce parameterized motion skills
and enable RL agents to learn over the skill parameter space
instead of the control space. To further leverage expert priors
on top of skills, we propose an inverse skill parameter recovery
technique to convert expert demonstrations from control space
to skill space. A simple but effective double initialization
technique is also introduced to better leverage expert priors.

(a) Highway

(b) Intersection

(c) Roundabout

Lat: -4.0
Yaw: 29.4
Vel: 8.7

Lat: 0.4
Yaw: 29.0
Vel: 9.1

Lat: -4.7
Yaw: -27.4
Vel: 1.6

Lat: -4.7
Yaw: -25.2
Vel: 9.2

Lat: -4.7
Yaw: -22.5
Vel: 8.4

Lat: -4.8
Yaw: -26.8
Vel: 2.8

Lat: -4.7
Yaw: 29.6
Vel: 9.9

Lat: 4.9
Yaw: 9.0
Vel: 7.5

Lat: 4.6
Yaw: 29.4
Vel: 9.9

Lat: -1
Yaw: 29.0
Vel: 10.0

Lat: -4.8
Yaw: 29.8
Vel: 9.5

Lat: -4.9
Yaw: 29.7
Vel: 9.1

Lat: 4.7
Yaw: 27.7
Vel: 9.9

Lat: -4.8
Yaw: 29.9
Vel: 9.8

Lat: 2.3
Yaw: 29.5
Vel: 9.4

Fig. 8: Visualizations of the trained agents in three dense-traffic scenarios. The dark red vehicle denotes the ego agent and the
blue line denotes the motion skill trajectory output by the agent. Generated parameters corresponding to the skill are shown in
the bottom right. (a) In the highway scenario, the agent performs consecutive lane changes to overtake vehicles ahead. (b) In
the intersection scenario, the agent turns left and overtakes vehicles ahead with a high velocity. (c) In the roundabout scenario,
the agent slows down to cautiously overtake the vehicle on the left (the second image), and drives slowly when vehicles ahead
block the way (the last image).

Validations on three challenging dense-traffic driving scenarios
demonstrate that our ASAP-RL significantly outperforms pre-
vious methods in terms of learning efficiency and performance.

REFERENCES

[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The
option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

[2] Matthew M Botvinick, Yael Niv, and Andew G Barto.
Hierarchically organized behavior and its neural founda-
tions: a reinforcement learning perspective. Cognition,
113(3):262–280, 2009.

[3] Jianyu Chen, Shengbo Eben Li, and Masayoshi
Tomizuka. Interpretable end-to-end urban autonomous
driving with latent deep reinforcement learning. IEEE
Transactions on Intelligent Transportation Systems, 23
(6):5068–5078, 2021.

[4] Murtaza Dalal, Deepak Pathak, and Russ R Salakhut-
dinov. Accelerating robotic reinforcement learning via
parameterized action primitives. Advances in Neural
Information Processing Systems, 34, 2021.

[5] Nachiket Deo, Akshay Rangesh, and Mohan M Trivedi.
How would surround vehicles move? a unified frame-
work for maneuver classification and motion prediction.
IEEE Transactions on Intelligent Vehicles, 3(2):129–140,
2018.

[6] Wenchao Ding, Lu Zhang, Jing Chen, and Shaojie Shen.

Epsilon: An efficient planning system for automated
vehicles in highly interactive environments. IEEE Trans-
actions on Robotics, 38(2):1118–1138, 2021.

[7] Yannis Flet-Berliac. The promise of hierarchical rein-
forcement learning. The Gradient, 2019.

[8] Tianyu Gu. Improved trajectory planning for on-road
self-driving vehicles via combined graph search, opti-
mization & topology analysis. PhD thesis, Carnegie
Mellon University, 2017.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018.

[10] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanc-
tot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, An-
drew Sendonaris, Ian Osband, et al. Deep q-learning from
demonstrations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

[11] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman
eluder dimension: New rich classes of rl problems, and
sample-efficient algorithms. Advances in neural infor-
mation processing systems, 34:13406–13418, 2021.

[12] Jian Jing, Elizabeth C Cropper, Itay Hurwitz, and
Klaudiusz R Weiss. The construction of movement
with behavior-specific and behavior-independent mod-
ules. Journal of Neuroscience, 24(28):6315–6325, 2004.

[13] Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zam-
baldi, Edward Grefenstette, Pushmeet Kohli, and Peter
Battaglia. Compositional imitation learning: Explain-
ing and executing one task at a time. arXiv preprint
arXiv:1812.01483, 2018.

[14] Jens Kober and Jan Peters. Learning motor primitives
for robotics. In 2009 IEEE International Conference on
Robotics and Automation, pages 2112–2118. IEEE, 2009.

[15] George Konidaris, Scott Kuindersma, Roderic Grupen,
and Andrew Barto. Robot learning from demonstration
by constructing skill trees. The International Journal of
Robotics Research, 31(3):360–375, 2012.

[16] Dieter Kraft. A software package for sequential quadratic
programming. Forschungsbericht- Deutsche Forschungs-
und Versuchsanstalt fur Luft- und Raumfahrt, 1988.

[17] Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang,
Zhenghai Xue, and Bolei Zhou. Metadrive: Composing
diverse driving scenarios for generalizable reinforcement
learning. IEEE transactions on pattern analysis and
machine intelligence, 2022.

[18] Zhaoting Li, Wei Zhan, Liting Sun, Ching-Yao Chan,
and Masayoshi Tomizuka. Adaptive sampling-based
motion planning with a non- conservatively defensive
strategy for autonomous driving. In The 21st IFAC World
Congress, 2020.

[19] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric
Xing. Cirl: Controllable imitative reinforcement learning
for vision-based self-driving. In Proceedings of the
European conference on computer vision (ECCV), pages
584–599, 2018.

[20] Haochen Liu, Zhiyu Huang, and Chen Lv. Improved
deep reinforcement learning with expert demonstrations
for urban autonomous driving. 2022 IEEE Intelligent
Vehicles Symposium (IV), pages 921–928, 2022.

[21] Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, SM Ali
Eslami, Daniel Hennes, Wojciech M Czarnecki, Yuval
Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, et al.
From motor control to team play in simulated humanoid
football. Science Robotics, 7(69):eabo0235, 2022.

[22] Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bron-
stein, Becca Roelofs, Benjamin Sapp, Brandyn White,
Aleksandra Faust, Shimon Whiteson, et al. Imitation is
not enough: Robustifying imitation with reinforcement
learning for challenging driving scenarios. arXiv preprint
arXiv:2212.11419, 2022.

[23] Roberto Martı́n-Martı́n, Michelle A Lee, Rachel Gardner,
Silvio Savarese, Jeannette Bohg, and Animesh Garg.
Variable impedance control in end-effector space: An
action space for reinforcement learning in contact-rich
tasks. In 2019 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 1010–1017.
IEEE, 2019.

[24] Josh Merel, Leonard Hasenclever, Alexandre Galashov,
Arun Ahuja, Vu Pham, Greg Wayne, Yee Whye Teh,
and Nicolas Heess. Neural probabilistic motor primitives
for humanoid control. arXiv preprint arXiv:1811.11711,

2018.
[25] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval

Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg
Wayne, and Nicolas Heess. Catch & carry: reusable neu-
ral controllers for vision-guided whole-body tasks. ACM
Transactions on Graphics (TOG), 39(4):39–1, 2020.

[26] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wo-
jciech Zaremba, and Pieter Abbeel. Overcoming ex-
ploration in reinforcement learning with demonstrations.
In 2018 IEEE international conference on robotics and
automation (ICRA), pages 6292–6299. IEEE, 2018.

[27] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and
Sergey Levine. Awac: Accelerating online reinforce-
ment learning with offline datasets. arXiv preprint
arXiv:2006.09359, 2020.

[28] Zhenghao Peng, Quanyi Li, Ka Ming Hui, Chunxiao
Liu, and Bolei Zhou. Learning to simulate self-driven
particles system with coordinated policy optimization.
Advances in Neural Information Processing Systems, 34:
10784–10797, 2021.

[29] Karl Pertsch, Youngwoon Lee, and Joseph J Lim. Accel-
erating reinforcement learning with learned skill priors.
arXiv preprint arXiv:2010.11944, 2020.

[30] Karl Pertsch, Oleh Rybkin, Jingyun Yang, Shenghao
Zhou, Konstantinos Derpanis, Kostas Daniilidis, Joseph
Lim, and Andrew Jaegle. Keyframing the future:
Keyframe discovery for visual prediction and planning.
In Learning for Dynamics and Control, pages 969–979.
PMLR, 2020.

[31] Jan Peters and Stefan Schaal. Reinforcement learning of
motor skills with policy gradients. Neural networks, 21
(4):682–697, 2008.

[32] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipula-
tion with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[33] Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever,
Markus Wulfmeier, Martina Zambelli, Giulia Vezzani,
Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas
Heess, et al. Learning transferable motor skills with
hierarchical latent mixture policies. arXiv preprint
arXiv:2112.05062, 2021.

[34] Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep
Kalathil, and Srinivas Shakkottai. Reinforcement learn-
ing with sparse rewards using guidance from offline
demonstration. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/
forum?id=YJ1WzgMVsMt.

[35] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelli-
gence and statistics, pages 627–635. JMLR Workshop
and Conference Proceedings, 2011.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec

https://openreview.net/forum?id=YJ1WzgMVsMt
https://openreview.net/forum?id=YJ1WzgMVsMt

Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http:
//arxiv.org/abs/1707.06347.

[37] Tanmay Shankar, Shubham Tulsiani, Lerrel Pinto, and
Abhinav Gupta. Discovering motor programs by recom-
posing demonstrations. In International Conference on
Learning Representations, 2019.

[38] Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li,
and Yu Liu. Safety-enhanced autonomous driving using
interpretable sensor fusion transformer. In Conference on
Robot Learning, pages 726–737. PMLR, 2023.

[39] Sahand Sharifzadeh, Ioannis Chiotellis, Rudolph Triebel,
and Daniel Cremers. Learning to drive using inverse
reinforcement learning and deep q-networks. arXiv
preprint arXiv:1612.03653, 2016.

[40] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529
(7587):484–489, 2016.

[41] Richard S Sutton, Doina Precup, and Satinder Singh.
Between mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[42] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin
Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
Leveraging demonstrations for deep reinforcement learn-
ing on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817, 2017.

[43] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

[44] Letian Wang, Yeping Hu, Liting Sun, Wei Zhan,
Masayoshi Tomizuka, and Changliu Liu. Hierarchical
adaptable and transferable networks (hatn) for driving
behavior prediction. arXiv preprint arXiv:2111.00788,
2021.

[45] Letian Wang, Liting Sun, Masayoshi Tomizuka, and
Wei Zhan. Socially-compatible behavior design of au-
tonomous vehicles with verification on real human data.
IEEE Robotics and Automation Letters, 6(2):3421–3428,
2021.

[46] Letian Wang, Yeping Hu, Liting Sun, Wei Zhan,
Masayoshi Tomizuka, and Changliu Liu. Transferable
and adaptable driving behavior prediction. arXiv preprint
arXiv:2202.05140, 2022.

[47] Wenshuo Wang, Letian Wang, Chengyuan Zhang,
Changliu Liu, Lijun Sun, et al. Social interactions for
autonomous driving: A review and perspectives. Founda-
tions and Trends® in Robotics, 10(3-4):198–376, 2022.

[48] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling,

and Tomás Lozano-Pérez. Learning compositional mod-
els of robot skills for task and motion planning. The
International Journal of Robotics Research, 40(6-7):866–
894, 2021.

[49] Lu Zhang, Wenchao Ding, Jing Chen, and Shaojie
Shen. Efficient uncertainty-aware decision-making for
automated driving using guided branching. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 3291–3297. IEEE, 2020.

[50] Tong Zhou, Letian Wang, Ruobing Chen, Wenshuo
Wang, and Yu Liu. Accelerating reinforcement learning
for autonomous driving using task-agnostic and ego-
centric motion skills. arXiv preprint arXiv:2209.12072,
2022.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Introduction
	Related Works
	Reinforcement Learning with Skills
	Reinforcement Learning with Expert Priors

	Approach
	Motion Skill Generation
	Skill Parameter Recovery
	Expert Prior Learning - Actor and Critic Pretraining
	RL over parameterized skill with priors

	Experiments
	Experiment Setup
	Environment
	Reward Definition
	Expert Demonstration Collection
	Baselines
	Evaluation metric
	A three-stage strategy for performance evaluation

	Performance Comparison
	Ablation study
	Influence of the length of skill
	Influence of expert prior

	Visualizations

	Conclusion

