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Abstract—Path planning for multiple tethered robots is a
challenging problem due to the complex interactions among
the cables and the possibility of severe entanglements. Previous
works on this problem either consider idealistic cable models
or provide no guarantee for entanglement-free paths. In this
work, we present a new approach to address this problem using
the theory of braids. By establishing a topological equivalence
between the physical cables and the space-time trajectories of
the robots, and identifying particular braid patterns that emerge
from the entangled trajectories, we obtain the key finding that all
complex entanglements stem from a finite number of interaction
patterns between 2 or 3 robots. Hence, non-entanglement can
be guaranteed by avoiding these interaction patterns in the
trajectories of the robots. Based on this finding, we present a
graph search algorithm using the permutation grid to efficiently
search for a feasible topology of paths and reject braid patterns
that result in an entanglement. We demonstrate that the proposed
algorithm can achieve 100% goal-reaching capability without
entanglement for up to 10 drones with a slack cable model in a
high-fidelity simulation platform. The practicality of the proposed
approach is verified using three small tethered UAVs in indoor
flight experiments.

SUPPLEMENTARY MATERIAL

A video illustrating the simulation and experiments is
available at https://youtu.be/igP7eaOyZuc. The supplemen-
tary document and the source code can be found at
https://github.com/caomuqing/tethered robots path planning.

I. INTRODUCTION

Tethered robots are connected to fixed or mobile objects
via tether cables [18]. Depending on the applications, a tether
cable may supply uninterrupted power to a robot, ensure a
robust communication link, or act as a physical connection
to an item for transportation. Despite the benefits, a cable is
prone to entanglements with surrounding obstacles, which may
greatly limit the reachable space of the robot and even cause
collisions. Therefore, the path planning of tethered robots is
an important topic to ensure the safety of the operations. Path
planning of a single tethered robot has been well studied by
the research community and efficient algorithms have been
proposed to navigate a tethered robot around the obstacles in a
planar or 3-D environment [17, 21, 8]. Recently, collaborative
tethered robots have also been studied for applications such as
search and exploration [14, 11], object gathering and removal
[16, 1], and item transportation [9]. Despite increasing interest
in the path planning of multiple tethered robots, it is still a

(a) Using the proposed approach, the robots remain untangled.

(b) Using a baseline approach, the cables become severely entangled.

Fig. 1: Simulations of multiple tethered UAVs to reach random targets using
(a) the proposed approach and (b) a baseline approach that does not take
tethers into consideration.

challenging problem due to the complex interactions among
the cables and the difficulty in modeling the entanglement.

Existing works address this problem by restricting the
problem settings or simplifying the cable model. Sinden
[15] considers a planar workspace and focuses on finding
a permissible sequence of visiting the targets such that the
straight cables do not cross each other. A planar workspace is
also considered in Zhang and Pham [22], but the robots are
allowed to push the other cables when in contact. Rajan et al.
[13] propose an entanglement detection system for a chain of
tethered robots, which requires additional hardware on each
robot for the measurement of tension and angles. Hert and
Lumelsky [6, 5] consider the navigation of multiple robots
in a 3-D workspace with fully stretched cables, and define
entanglement as any bending due to cable-cable contacts. A



movement of a robot results in a triangular area swept by
the straight cable, hence feasible paths are found by checking
intersections between the swept area and the other cables.
In practice, cables are hardly fully straight, hence such an
approach does not guarantee collision avoidance and non-
entanglement. The recent work [2] presents a distributed
approach for trajectory planning of multiple tethered robots
with consideration for slack cables. Relying on a topology-
guided heuristic that records the crossings among the cables,
the approach generates feasible paths in an efficient manner.
However, the approach does not guarantee non-entanglement
and falls into deadlocks when the number of robots increases.

The theories of knots and braids are important topics in the
field of low-dimensional topology [12] and have seen recent
applications in robotic systems to fold and unfold physical
knots. Disentangling one or multiple cables using robot arms
is studied in [20, 19]. D’Antonio and Saldaña [4] plan paths for
a team of unmanned aerial vehicles (UAVs) to form a desired
knot pattern using a long cable. The results of these works
are not applicable to our problem, as they allow grasping and
pulling at multiple locations along a cable, while a tethered
robot is only connected to the end of a cable. Braid theory has
also been applied in recent works to characterize the topology
of the interactions among moving robots[3, 10]. However,
the connection between braids and tethered robots remains
unrevealed.

In this work, we aim to answer the following questions:
(1) is the entanglement of the cables in a multi-robot scenario
associated with special topological patterns in the braids? (2)
can non-entangling paths be generated for multiple tethered
robots in a bounded workspace, considering a slack cable
model? We first provide a formal definition of entanglement
based on the concepts of isotopy and elementary moves. By
introducing a parameter that defines the allowable bending in
the cables, our definition of entanglement is applicable to both
slack and taut cables. To answer the first question, we establish
the topological equivalence between the cables and the space-
time trajectories of the robots. Then, by acquiring a topological
characterization of the entangled space-time trajectories using
braids, we identify particular braid patterns necessary for the
occurrence of entanglements. The key insight is that any
entanglements, however complex, are resulted from a few
interaction patterns between 2 or 3 robots. To address the
second question, we propose a graph search algorithm that
searches for a feasible topology of paths using the concept
of permutation grids. The algorithm efficiently rejects path
topologies that result in entangling braid patterns and hence
guarantees non-entanglement for the generated paths. The
proposed algorithm is evaluated in a simulation involving
6 to 10 robots. Comparisons with the existing approaches
show that our approach is the only one that completes all
tasks successfully. The main contributions of this work are
summarized as follows:

• We present a formal definition of entanglement for multi-
ple tethered robots applicable to both taut and slack cable
models;

• We identify the braid patterns necessary for the occur-
rence of entanglement and establish the conditions for
generating non-entangling trajectories;

• A permutation grid search algorithm is proposed to
generate guaranteed non-entangling paths considering a
slack cable model;

• The effectiveness of the algorithm in entanglement pre-
vention is verified in realistic simulations and comparison
with the existing approaches.

• Flight experiments using three UAVs verify the practical-
ity of the approach in real tethered systems.

To the best of our knowledge, this is the first work that
addresses the path planning of multiple tethered robots with
guaranteed non-entanglement using a slack cable model.

The rest of this paper is organized as follows. Notations
and preliminary concepts related to isotopy and braids are dis-
cussed in Section II. In Section III, we introduce a procedure
to obtain a topological characterization of entanglements using
the theory of braids and present detailed proofs. Section IV
presents the path planning algorithm using permutation grids.
Section V introduces the simulation setup and discusses the
simulation results. Flight experiments using small UAVs are
presented in Section VI. Section VII draws the conclusion.

II. PRELIMINARIES

A. Notation

In this paper, Rn denotes the n-dimensional Euclidean
space, Z+ indicates the set of positive integers. In denotes
the set consisting of integers 1 to n, i.e., In = {1, . . . , n}. A
line segment with two boundary points a and b is denoted by
ab. More symbols will be introduced when they appear in the
paper.

B. Elementary Moves and Isotopy

In this work, we consider a 3-Dimensional Euclidean space
bounded by two horizontal planes, Q̂ = {(x, y, z)|(x, y) ∈
Q, 0 ≤ z ≤ h}, where Q ⊂ R2 is a simply connected
2-D region, h is the height of the workspace. Denote the
intersection between Q̂ and the level plane z = l ∈ [0, h]
as Q̂l, i.e., Q̂l = {(x, y, z)|(x, y) ∈ Q, z = l}. Consider a
set of non-intersecting continuous curves, each starting from
the floor of the workspace, Q̂0, and ending at the ceiling of
the workspace, Q̂h. A polygonal approximation of the curves
is a set of polygonal lines that shares the same starting and
ending points with the original curves, and can be continuously
deformed into the original curves without intersecting each
other. Consider c1c2 to be an edge on a polygonal chain, as
shown in Figure 2. Let c′1 be a point in Q̂ such that the triangle
∆c1c

′
1c2 does not intersect with any other polygonal chains.

An elementary move is an operation that replaces c1c2 by
c1c′1 ∪ c′1c2, or in the case that c1c′1 ∪ c′1c2 is part of the
original chain, replace it by c1c2 [12].

Definition 2.1 (Isotopy): Two sets of polygonal lines in Q̂
are isotopic or ambient isotopic if one set of lines can be
transformed into the other through a sequence of elementary
moves.



Fig. 2: An illustration of an elementary move.

Consider a projection of polygonal lines onto a plane
perpendicular to the X-Y plane. At the intersections between
polygonal lines, overpasses and underpasses are defined based
on their spatial relations in 3-D. An elementary move in 3-
D has a corresponding elementary move in 2-D, as shown in
the bottom left of Figure 2. Similarly, two sets of projected
polygonal lines in 2-D are isotopic or plane isotopic, if a
sequence of 2-D elementary moves can be applied to transform
one to another.

C. Topological Braids

The Artin n-braid group, denoted as Bn, is a group with
n− 1 generators σ1, σ2, . . . , σn−1 and the group relations [7]

σiσj = σjσi, i, j ∈ In−1, |i− j| ≥ 2, (1)
σiσi+1σi = σi+1σiσi+1, i ∈ In−2. (2)

The identity element in the group is denoted as e. B2 is
generated by a single generator σ1 with no group relations, and
B3 is generated by σ1, σ2 and relation (2). A braid, b ∈ Bn

can be written as a composition of group generators and their
inverses, b = τ1τ2 . . . τK , where K is the length of the braid,
τi ∈ {σ±1

1 , σ±1
2 , . . . , σ±1

n−1} is called an elementary braid.
A curve or a polygonal line is called ascending if it is

monotonically increasing in z, in other words, each horizontal
plane intersects with an ascending line at only one point. An
n-braid can be represented in a 2-D diagram consisting of n
ascending strings Xi(z) : [0, 1] → R, i ∈ In. The starting and
ending points of each string satisfy Xi(0) ∈ In, Xi(1) ∈ In.
Each elementary braid σ±1

i in the braid word corresponds to
a crossing between the i-th string (i denotes the order of the
string when counting from left to right) and the (i + 1)-th
string, where an overpass by the i-th string is denoted as σi

and the underpass is denoted as σ−1
i .

In the standard definition of braids, each braid string is only
defined in the domain {z ∈ [0, 1]}. In this work, we relax the
definition by allowing the braid strings to have a domain [0, t]
for t ∈ R+. Furthermore, b(t) indicates the braid obtained
when the crossings among the braid strings in the interval
[0, t] are taken into account. Examples of braid diagrams are
shown in the bottom left of Figure 3.

III. TOPOLOGICAL CHARACTERIZATION OF
ENTANGLEMENTS USING BRAIDS

We consider a team of n tethered robots navigating in
the workspace Q̂, and assume the robots’ movements to be
constrained in the ceiling of the workspace Q̂h. To reach a
target position at a different height, a robot first moves to the
same horizontal position, then descends to the target. Each
robot is attached to a base station placed on the floor Q̂0. The
cables form a set of mutually disjoint topological intervals that
start at the bottom of the workspace and end at the ceiling,
as shown in the top left of Figure 3. A robot follows a path
qi : [0, Ti] → Q, where qi(0) = qsi is the same as the horizon-
tal position of its base and qi(Ti) = qdi is a user-defined target.
A scaled space-time trajectory of the robot is constructed
as ξi : [0, T ] → Q̂, where ξi(t) = (qi(t), t

h
T ) ∈ R3 for

0 ≤ t < Ti and ξi(t) = (qi(Ti), t
h
T ) for Ti ≤ t ≤ T .

T = maxi∈In
Ti is the longest time taken by any robot to

reach the target. At a height z, 0 ≤ z ≤ h, the collection of
scaled space-time trajectories {ξi}i∈In

intersects with Q̂ at n
distinct points (given that the robot’s trajectories are not in a
collision). See the top right of Figure 3 for an illustration of
scaled space-time trajectories.

Lemma 3.1: The set of cables connecting n robots to their
bases is isotopic to the scaled space-time trajectories of the
robots.

Proof: The shapes of the cables are closely related to the
paths taken by the robots in the worksapce, because (1) a cable
hanging from a robot will likely have its first contact with the
ground in the neighbourhood of the X-Y coordinates of the
robot, (2) when robot i crosses a path that has taken by robot j,
robot i’s cable will slide over the cable of robot j. Therefore,
we construct an approximation of the configurations of the
cables, labeled as q̃i ∈ R3, in the following way (graphic
illustration in the top middle of Figure 3)

q̃i(t) =


(qi(t), 0), t ∈ Ti\T cro

i

(qi(t), hs), t ∈ T cro
i

(qi(Ti), h), t > Ti.

(3)

T cro
i denotes a set of time intervals, each time interval is a

small neighbourhood of the time that robot i travels to a same
location visited by another robot before, i.e., T cro

i = {[t−ϵ, t+
ϵ]|qi(t) = qj(tj),∀t ∈ (0, Ti], tj ∈ (0, t), j ∈ In\i}. hs is a
value greater than zero, indicating a small height that a cable
is elevated to. Clearly, the set {q̃i}i∈In

is isotopic to the actual
cables of the robots. To establish an isotopy between {q̃i}i∈In

and the space-time trajectories, note that we can transform
q̃i(t) to ξi(t) by elementary moves for all t ∈ [0, T ], because



Fig. 3: Overview of the approach.

they share the same X-Y coordinates for all t, and their order
in the z-coordinates (z-order) are the same, i.e., for q̃i(t) and
q̃j(tj) such that qi(t) = qj(tj), t > tj , q̃i(t) has a higher
z-coordinate than q̃j(tj), ξi(t) also has a higher z-coordinate
than ξj(tj). This is because a robot who travels to the same
location at a later time has its space-time trajectory at a higher
z-coordinate. Hence, the cables can be transformed to their
corresponding space-time trajectories isotopically.

We specify a 2-D plane perpendicular to the X-Y plane
as P(α) = {(x, y, z)|x cosα + y sinα = 0, z ∈ R} where
α ∈ [0, π] is the projection angle with respect to the positive
X axis. A set of 2-D trajectories ξαi : [0, T ] → P(α), i ∈ In,
is obtained by the projection of the space-time trajectories ξi
onto P(α) (bottom right of Figure 3).

A crossing between 2-D trajectories indicates an event of
two robots swapping positions in the projected axis. Such an
event can be represented as a braid generator σ±1

i , where i
indicates the ranking of the leftmost swapping robot in increas-
ing order of the robots’ projected positions. A braid word bα(t)
is obtained by joining the elementary braids representing the
crossing events that have occurred from time 0 to time t. Let
bαi,j,k(t) be the 3-braid obtained by removing all the trajectories
except for the trajectories of robots i, j, k. Similarly, bαi,j(t)
indicates the 2-braid obtained when only considering the
crossings between robots i and j. Here, i, j, k ∈ In are the
fixed indices of the robots. For each braid word, an equivalent
braid diagram can be drawn, as shown in the bottom left of

Figure 3.
We have introduced a procedure to obtain a topological

characterization of robot paths in the form of braids. To
establish a connection between the entanglements of cables
and the topological braids, we first provide a formal definition
of the entanglement based on the horizontal bending angles
of the cables. As described in Section II-B, the cables can be
approximated as a set of non-intersecting polygonal segments,
and elementary moves can be applied to shorten the length of
the cables while preserving isotopy. Another interpretation of
this shortening process is that the base station exerts tension
on the cable and retracts the cable while the robots hold
their positions. The cables are shortened until they are either
completely straight or in contact with other cables.

Definition 3.2 (Maximum angle of rotation): Given a poly-
gonal approximation of the cables, denoted as C, a set of pro-
jected line segments onto the X-Y plane can be obtained. Each
segment is assigned a direction consistent with the direction
from the base to the robot (Figure 4). γi(C) is the maximum
angle of rotation between any of the projected segments of
robot i, γi ∈ [0, π]. The maximum angle of rotation of the
entire team for this particular polygonal approximation is
γ(C) = maxi∈In γi(C). The minimum of γ among all isotopic
polygonal approximations of the cables is denoted as γ, i.e.,
γ = minC γ(C) = minC maxi∈In γi(C).

Intuitively, γ(C) indicates the extent of deviation from a set
of straight lines for a particular polygonal approximation C,
and γ indicates the minimum deviation possible, which usually



Fig. 4: The projected polygonal segments onto X-Y plane for robot i. The
maximum angle of rotation, γi, is the rotation angle between c4c5 and c0c1.
The dashed line is parallel to c0c1.

Fig. 5: An illustration of entanglement. The blue and green solid lines
are the cables/trajectories of robot i and j. The blue dashed lines are the
cable/trajectory of robot i projected onto the X-Y plane. The bottom two
plots show the projections of the cables/trajectories onto a plane P(α). In the
bottom left plot, the blue projected trajectory is non-monotonic.

occurs when the cables are fully retracted. Only horizontal
bending is considered because the degree of vertical bending
is small when the robots move at a similar height. Now, we
give the definition of entanglement based on the bending angle.

Definition 3.3 (ϕ-Entanglement): The cables are said to be
ϕ-entangled or in a state of ϕ-entanglement when γ ≥ ϕ for
a chosen ϕ ∈ (0, π].

Figure 5 illustrates a polygonal approximation of two cables
with γi = γ = 2

3π, thus the cables are 2
3π-entangled. When ϕ

is chosen close to zero, any small bending in the cables is con-
sidered an entanglement, which is in line with the definition
of entanglement for taut cables in [6]. Slack cables generally
have a higher tolerance for bending, hence a higher ϕ may be
chosen. We neglect trivial cases of entanglement where cables
are bent due to coplanarity by assuming that {(qsi , 0), (qdi , h)}

Fig. 6: The projected trajectories of robots. The gray dashed lines outline
the partitioned triangles.

are not co-planar with {(qsj , 0), (qdj , h)}, ∀i, j ∈ In, i ̸= j.
Corollary 3.4: If the cables are ϕ-entangled, then the space-

time trajectories of robots are also ϕ-entangled, i.e., the
space-time trajectories cannot be isotopically transformed to a
polygonal approximation C such that γ(C) < ϕ.

Owing to Corollary 3.4, the identification of entanglement
can be done by analyzing the space-time trajectories. In the
following lemma, we show that given suitable projection
angles, the projections of ϕ-entangled trajectories exhibit a
special property.

Lemma 3.5: Define A(m) = { i
mπ|i = 0 . . .m,m ∈ Z+}

to be the set of projection angles evenly dividing the range
[0, π]. By setting m > π

ϕ , there exists α ∈ A(m), such that
the projection of a set of ϕ-entangled space-time trajectories
onto the plane P(α) is non-isotopic to a set of straight lines.

Proof: See Section 1 of the supplementary document.
In the following lemma, we show that a set of projected

trajectories non-isotopic to straight lines can be identified by
analyzing their corresponding 2-braids and 3-braids.

Lemma 3.6: For a set of projected trajectories {ξαi (t)}i∈In
,

t ∈ [0, T ], which is non-isotopic to a set of straight lines,
there exists a corresponding 3-braid bαi,j,k(t) or 2-braid bαi,j(t),
t ∈ (0, T ], i, j, k ∈ In, i < j < k, that satisfies at least one
of the following:
(1) bαi,j(t) is equivalent to σ1σ1 or σ−1

1 σ−1
1 ;

(2) bαi,j,k(t) is equivalent to a word in the set {σc
fσ

−c
g σc

f |c ∈
{1,−1}, f, g ∈ {1, 2}, f ̸= g}.

Proof: Consider a set of projected trajectories among
which at least one is non-straight. A non-straight projected tra-
jectory bounds a polygon area (illustrated by the area bounded
by the solid dark blue and the dashed dark blue lines in Figure
6), which can be partitioned into multiple smaller triangles of
4 types [12] (Figure 7): (I) triangles whose interiors contain



Fig. 7: Four types of triangles. The small circles indicate either an overpass
or an underpass. An elementary move may be executed from any one
(respectively, two) edge of a triangle to the other two (respectively, one)
edges, provided such a move preserves plane isotopy and both the edges
before and after the move are ascending. To follow a temporal sequence, the
edge(s) before a move should not intersect with any outgoing trajectories,
except when the edge(s) belong(s) to the original polygonal trajectory.

a crossing between two segments; (II) triangles that contain a
vertex of a polygonal trajectory; (III) triangles containing part
of a straight segment without any vertex; (IV) those containing
an empty space. Figure 6 illustrates a partitioned polygon.
Suppose we attempt to shorten a non-straight trajectory by
evaluating whether an elementary move can be applied to each
of the triangles. Two conditions should be satisfied: (1) the
evaluation of the triangles should follow a temporal sequence,
i.e., a triangle containing a later part of a trajectory is evaluated
later than a triangle containing an earlier part of the same
trajectory; (2) the transformed trajectory after each elementary
move should be ascending in t, i.e., both the edges before
and after an elementary move should be ascending. Given
that the initial trajectories are ascending, there always exists a
set of triangles and a sequence of evaluations satisfying both
conditions (see Section 2 of the supplementary document for
the justification for this statement). Figure 6 shows a valid
sequence of moves with the numbering on each triangle. If
elementary moves can be applied to all triangles, then a non-
straight trajectory is isotopic to a straight line. Conversely,
a trajectory non-isotopic to a straight line must have some
triangles to which the elementary moves are not applicable,
and we call these triangles tangles. By exhaustively listing and
assessing all possible forms of the triangles, we find three such
tangles (and their symmetric and mirror images), as shown in
Figure 8.

Suppose we have applied a sequence of elementary moves
on trajectory i and we encounter a tangle the same as Figure
8a, representing an interaction between trajectory i and j from
time t1 to t2. Since both trajectories are ascending, we can
obtain a braid representation of the trajectories. The 2-braid
formed up to time t2, bαi,j(t2), is equivalent to σ1σ1, because
bαi,j(t1) has been reduced to identity through previous elemen-
tary moves. Similar analysis can be applied to the symmetric
and mirror images of Figure 8a to obtain all the representations
for 2-braid tangles, which are bαi,j(t) = (σ1σ1)

±1.
Suppose we have encountered an interaction among 3

(a)

(b) (c)

Fig. 8: Three types of local tangles. The solid blue segments cannot be
moved to the dashed segments through plane isotopy. (a) A 2-trajectory
tangle with a braid word σ1σ1, (b) A 3-trajectory tangle with a braid word
σ−1
1 σ2σ

−1
1 . (c) A 3-trajectory tangle with a braid word σ1σ

−1
2 σ1σ

−1
2 σ1.

Fig. 9: The braid diagram containing a 3-braid tangle in the form of Figure
8b.

trajectories, i, j, k ∈ In, the same as Figure 8b. The 3-
braid bαi,j,k(t2) is represented as a diagram shown in Figure
9, where bαj,k(t1) is a 2-braid depending on the trajecto-
ries of robot j and k up to time t1. We first exclude the
occurrence of 2-braid tangles by assuming that the 2-braid
bαj,k(t) is not equivalent to (σ1σ1)

±1, ∀t ∈ [0, t2]. This
is only possible if bαj,k(t1) is equivalent to the identity or
σ1. In the first case, we have bαi,j,k(t2) = σ−1

1 σ2σ
−1
1 ; in

the second case, bαi,j,k(t2) = σ2σ
−1
1 σ2σ

−1
1 , which has a

preceding braid bαi,j,k(t0) = σ2σ
−1
1 σ2 for t0 < t2. By applying

the same analysis to all symmetric and mirror images of
Figure 8b and 8c, and excluding cases of 2-braid tangles,
we obtain the set of words representing the 3-braid tangles
{σc

fσ
−c
g σc

f |c ∈ {1,−1}, f, g ∈ {1, 2}, f ̸= g}.
Since the braids are invariant to the sequence of robot

indices, i.e., bi,j,k(t) = bj,i,k(t) = bk,j,i(t), ∀i, j, k ∈ In,
it is sufficient to consider distinct combinations of robot pairs
and triplets in the examination of 2-braids and 3-braids, hence
the condition i < j < k.

Putting all the tools together, we provide sufficient condi-
tions for the avoidance of entanglements.



Fig. 10: Left: the positions of robots in the projected space. Right: a 5× 5
permutation grid.

Theorem 3.7: If for all i, j, k ∈ In, i < j < k, t ∈ (0, T ],
α ∈ A(m) = { i

mπ|i = 0 . . .m,m > π
ϕ ,m ∈ Z+}, the 3-

braids and 2-braids, bαi,j,k(t) and bαi,j(t), obtained by projecting
the space-time trajectories of n robots onto P(α), satisfies the
following:

(1) bαi,j(t) is not equivalent to σ1σ1 or σ−1
1 σ−1

1 ,
(2) bαi,j,k(t) is not equivalent to any word in the set

{σc
fσ

−c
g σc

f |c ∈ {1,−1}, f, g ∈ {1, 2}, f ̸= g},
then, the cables of n robots are not ϕ-entangled for all time
t ∈ [0, T ].

Proof: Given that conditions (1) and (2) hold, Lemma 3.6
guarantees that the projected trajectories {ξαi }i∈In

are always
isotopic to a set of straight lines, ∀α ∈ A(m), t ∈ (0, T ].
Lemma 3.5 ensures that the space-time trajectories are not ϕ-
entangled throughout the time interval (0, T ]. Finally, due to
the isotopy between the cables and the space-time trajectories
(Lemma 3.1), the theorem is proven.

IV. PLANNING USING PERMUTATION GRID

In this section, we present the approach for path planning
of n robots free of ϕ-entanglement for any ϕ > π

2 . To ensure
Lemma 3.5 holds for ϕ > π

2 , we choose m = 2 projection
axes perpendicular to each other, and obtain the sequence of
the robots in increasing order of their projected positions. The
order of robot i on the l-th projection axis is denoted by pli ∈
In, l ∈ {1, 2}. A permutation grid is a n × n grid space in
which each robot takes a position at (p1i , p

2
i ) ∈ R2, and none of

the robot pairs occupies the same row or column, as shown in
Figure 10. In this way, we abstract the Euclidean workspace Q
into a discrete grid space, and the continuous positions of the
robots into permutations. A move of a robot on the permutation
grid always induces an opposite movement of the adjacent
robot. Hence, given a set of robot permutation positions Φ =
{pli|i ∈ In, l ∈ {1, 2}}, the one-step action space U consists
of exchanging the positions of the adjacent robots, pli and plj ,
∀plj = pli + 1, pli ∈ In\n, i, j ∈ In, l ∈ {1, 2}. Each action
represents an elementary 2-braid τ ∈ σ±1

1 added to the 2-braid
bli,j , and an elementary 3-braid τ ∈ {σ±1

1 , σ±1
2 } added to each

3-braid involving robot i and j, bli,j,k, k ∈ In\{i, j}.
A graph search approach (Algorithm 1) is used to generate

a feasible path from a set of initial permutation positions,
Φs, to the target permutation positions, Φd. Each graph node
represents a set of robot positions on the grid, Φ, and carries

Algorithm 1: Graph search using permutation grid

Input: initial permutation Φs, target permutation Φd,
initial braids
B = {bli,j , bli,j,k|i, j ∈ In, i < j < k, l ∈ {1, 2}}

Output: A path from Φs to Φd

1 function GraphSearch
2 InsertStartingNode(openList,Φs,B)
3 while openList is not empty do
4 node = openList.pop() // get best node
5 move node to closedList
6 if node.Φ = Φd then
7 return RetrievePath()
8 forall u ∈ U do
9 childNode = initializeChild(node, u)

10 τ = compute2Braid(i, j, childNode.Φ)
11 [childNode.bli,j , valid] =

updateCheck2Braid(childNode.bli,j , τ )
12 if valid == false then
13 reject childNode
14 forall k ∈ In, k ̸= i, k ̸= j do
15 i, j, k = sort(i, j, k)
16 τ = compute3Braid(i, j, k, childNode.Φ)
17 [childNode.bli,j,k, valid] =

updateCheck3Braid(childNode.bli,j,k, τ )
18 if valid == false then
19 reject childNode

20 updateCosts(childNode)
21 if childNode in openList then
22 Update cost and parent if new cost is

lower
23 else if childNode not in closedList then
24 Add childNode to openList

25 return emptyPath

the 2-braids and 3-braids representing the crossing actions
that have taken place in all 2-robot pairs and 3-robot triplets.
In every iteration, a node is popped from the open list, and
child nodes are generated from the set of permutation actions
(line 8-9) by exchanging the positions of robot i and robot
j on the l-th axis. Then, the elementary 2-braid τ induced
by the permutation action is computed, and the word bli,j is
updated and checked against the condition in Theorem 3.7
(line 10-11). A child node that does not satisfy the condition
for 2-braid is rejected immediately. Similarly, all 3-braids
involving robots i and j are updated and evaluated (line 14-
19). The heuristic cost is the sum of the Manhattan distances
for all robots to reach their targets. In practice, a bias larger
than one is chosen to favor nodes closer to the targets. The
search process continues until a node that reaches Φd is found
(line 6-7). The pseudocodes for the updateCheck2Braid and
updateCheck3Braid functions are available in Section 3 of the
supplementary document.



The output of the search algorithm is a path from the initial
permutation to the target permutation, Φs,Φ1,Φ2, . . . ,Φd,
which defines a specific topology of the path in the real
workspace. In our approach, we use a simple linear function
θ : [0, π] × (In × In) → Q to map the permutation grid
to a n × n grid in the workspace, where the grid size is
larger than a safety distance between robots to ensure col-
lision avoidance. Hence, the robots follow a set of waypoints
θ(α,Φs), θ(α,Φ1), . . . θ(α,Φd), and finally move to {qdi }i∈In

using straight paths. During the movements of robots, the
2-braids and 3-braids are updated when crossings between
robots take place. These updated braid words can be used
as initial conditions for subsequent planning with guaranteed
entanglement avoidance.

V. SIMULATIONS

Simulations of multiple tethered UAVs are conducted in
Unity game editor with AGX Dynamics plugin 1 installed to
accurately simulate the dynamics of the cables and the effect
of entanglements on the robots. A slack and non-retractable
cable of fixed length is attached to each simulated UAV. The
proposed permutation grid planning algorithm is implemented
as a Robot Operating System (ROS) program which transmits
the planned waypoints to the simulator through ROS TCP
Connector 2. In each simulation run, a team of 6 to 10 UAVs
is tasked to travel to 100 sets of target positions. A task is
successful when all robots reach their assigned targets; if a
set of targets cannot be reached or some of the robots are
stuck, the task fails and the targets will be updated.

The following existing approaches are used for comparison:
(1) Neptune [2], a distributed trajectory planning approach for
multiple tethered robots considering a slack cable model; (2)
Hert [6], a centralized approach considering fully stretched
cables; (3) a baseline multi-robot trajectory planner without
the cable-related constraints, labeled as Neptune* (the codes
for both Neptune and Neptune* are released by the authors
of [2]). In all simulations, the proposed and the compared
algorithms run on a mini-computer with Intel i7-8550U CPU.
Two screenshots of simulations are shown in Figure 1. A
video of the simulations can be viewed in the supplementary
material.

Figure 11 shows the success rate, the computation time, and
the distance traveled for all approaches with respect to the
number of robots involved. From the top plot, we can observe
that the proposed approach is the only one to ensure all tasks
are successfully completed. The success rate of Neptune is
close to 100% with 6 robots but drops to below 80% when the
number of robots increases to 10. As a distributed approach,
Neptune is unable to guarantee feasible and entanglement-
free paths for all robots, hence freezing robots are observed
in the simulation. The success rates of Neptune* and Hert
are significantly lower than the other two approaches. In both
approaches, the entanglement of the cables accumulates and

1https://www.algoryx.se/agx-dynamics/
2https://github.com/Unity-Technologies/ROS-TCP-Connector

Fig. 11: Plots of the success rate, the average computation time, and the
average distance traveled for the proposed and the compared approaches.

results in a huge tangle in the center of the workspace (Figure
1b). Eventually, only the targets near the tangle can be reached
by the robots. Hert generates 3-D paths that require a robot
to move below a taut cable to avoid cable contacts. However,
in the case of a slack cable model, moving vertically does not
generate the same path topology as in the case of taut cables,
because slack cables lie on the ground. Hence, the performance
of Hert is only comparable to a baseline multi-robot planner
where cables are not considered at all.

The middle plot shows the computation time of all ap-
proaches. Both distributed approaches generate initial tra-
jectories within 100ms, but the generated trajectories only
ensure collision avoidance for a short planning horizon, and
frequent online replanning is required. Our approach generates
trajectories for all robots in a one-time computation. The
computation time increases with the number of robots, but
an average computation time of 3s for 10 robots is acceptable



as a waiting time for on-demand targets. Although both our
approach and Hert are centralized approaches, we rely on pre-
computed reduction rules to efficiently update braids and check
entanglement. On the other hand, the computation time of
Hert is burdened by the expensive line-triangle intersection
checking procedure to avoid cable-cable contacts.

One weakness of the proposed approach is the length of the
generated paths, as seen from the bottom plot. The average
distance traveled for each robot (only considering successful
tasks) is considerably higher in our approach. This is due
to the direct mapping of paths in a permutation grid into
the real workspace. Every movement of a robot accompanies
an opposite movement of another robot, which could be
unnecessary and increases the distance traveled by each robot.
Although direct mapping is an inefficient strategy, it is a simple
implementation to validate the effectiveness of the proposed
approach in generating entanglement-free paths. In our future
work, efficient topology-guided path generation will be studied
and integrated with the proposed permutation grid search.

VI. FLIGHT EXPERIMENT

We verify the practicality of the proposed approach using
three small tethered UAVs in a 5m×5m×2m indoor area.
Each UAV is connected to a ground power supply using a
long power cable. Random targets are generated during the
experiment, and a ground computer computes the paths and
sends them to the UAVs through a Wifi network. Figure 12
illustrates a flight experiment, where the robots and their cables
are highlighted for easy identification. The supplementary
video shows an experiment in which three UAVs complete 25
sets of targets successfully and remain untangled. The average
computation time on a computer with Intel i7-8750H CPU is
less than 10ms, which guarantees the online performance of
the algorithm. The average completion time for a set of targets
is 12.5s with 0.7m/s maximum velocity of the UAVs.

VII. CONCLUSION

In this work, we have investigated the problem of path
planning for multiple tethered robots. The main contribution
of this work is to establish the connection between the entan-
glements of the cables and the topological braids representing
robots’ trajectories. This is accomplished by (1) showing the
topological equivalence between the cables and the robots’
space-time trajectories, (2) converting the projected space-time
trajectories into braids, and (3) identifying particular braid
patterns that are necessary for the occurrence of entangle-
ments. A graph search algorithm based on the permutation
grid has been proposed for generating a feasible topology of
robot paths, and paths containing the entangling braids patterns
are guaranteed to be rejected. Simulations and experiments
demonstrate the effectiveness of the proposed algorithm in
avoiding entanglement in complex and realistic scenarios.
To address the issue of long path length highlighted by the
simulation results, our future research will focus on efficient
multi-robot path generation in Euclidean space given a specific
path topology.

Fig. 12: Left: photos of a flight experiment. Right: visualization of positions
and goal points of the robots.
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