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Abstract—Accurate and robust state estimation is critical for
autonomous navigation of robot teams. This task is especially
challenging for large groups of size, weight, and power (SWAP)
constrained aerial robots operating in perceptually-degraded
GPS-denied environments. We can, however, actively increase
the amount of perceptual information available to such robots
by augmenting them with a small number of more expensive,
but less resource-constrained, agents. Specifically, the latter can
serve as sources of perceptual information themselves. In this
paper, we study the problem of optimally positioning (and
potentially navigating) a small number of more capable agents
to enhance the perceptual environment for their lightweight,
inexpensive, teammates that only need to rely on cameras and
IMUs. We propose a numerically robust, computationally efficient
approach to solve this problem via nonlinear optimization.
Our method outperforms the standard approach based on the
greedy algorithm, while matching the accuracy of a heuristic
evolutionary scheme for global optimization at a fraction of
its running time. Ultimately, we validate our solution in both
photorealistic simulations and real-world experiments. In these
experiments, we use lidar-based autonomous ground vehicles as
the more capable agents, and vision-based aerial robots as their
SWAP-constrained teammates. Our method is able to reduce
drift in visual-inertial odometry by as much as 90%, and it
outperforms random positioning of lidar-equipped agents by a
significant margin. Furthermore, our method can be generalized
to different types of robot teams with heterogeneous perception
capabilities. It has a wide range of applications, such as surveying
and mapping challenging dynamic environments, and enabling
resilience to large-scale perturbations that can be caused by
earthquakes or storms.

I. INTRODUCTION

The low size, weight, and power requirements of inertial
measurement units (IMUs) and cameras have made them
a standard combination of sensors for SWAP-constrained
flying robots such as agile micro aerial vehicles. Neverthe-
less, harnessing these sensors for accurate state estimation
requires overcoming several challenges. In particular, visual-
inertial odometry (VIO) quickly accumulates significant drift
in unstructured, dynamic, or featureless environments. Such
drift can dramatically degrade the efficacy and safety of an
autonomous system.

Effective use of cameras rests upon the presence of a
sufficient quantity of visual information in the form of texture
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Figure 1: Robot platforms used in our experiments. Both
platforms are capable of long-range GPS-denied autonomous
navigation. In the experiments of this paper, the UAV relies
only on cameras and the IMU for state estimation, while the
UGVs rely on lidars. We refer readers to [1] and [2] for details
on our UAV and UGV platforms.

or landmarks in the environment. Information-rich scenarios
display a large set of visual cues, typically in the form of
landmarks spread throughout the surroundings of the agent.
In the absence of such visual features, the quality of state
estimates rapidly degrades. To overcome this challenge, we
consider augmenting low-SWAP robots with a small number
of agents without such stringent payload constraints to robustly
navigate unstructured environments.

The predominant way of solving such problems for a
single agent involves planning perception-aware trajectories.
Intuitively, this means choosing paths that only traverse re-
gions of the environment with sufficiently rich perceptual
content. Naturally, this limits the operating space of the robot.
However, in multi-agent settings, we can leverage the fact
that we can design heterogeneous teams comprising of agents
with different perceptual capabilities. In particular, a select
subset of just a few perceptually-advantaged robots can act as
landmarks for their vision-driven teammates. Our approach
involves optimizing the positions of the former subset of
agents using a second-order smooth optimization scheme.

We summarize our contributions as follows:
1) We propose a framework to tackle the multi-robot local-

ization problem, by letting select members of the team
serve as landmarks for their teammates with different
sensing modalities.

2) We propose an algorithm for the underlying active robot
positioning problem that outperforms an approximate
method based on a greedy algorithm. Furthermore,
numerical results suggest that our algorithm matches



the accuracy of a heuristic evolutionary scheme for
global optimization while having a significantly lower
computational demand.

3) We validate our method in photorealistic simulations and
real-world experiments using a robot team composed of
one UAV and multiple UGVs as shown in Fig. 1. In
particular, we show that our method can reduce VIO
drift by as much as 90%.

The rest of the paper is organized as follows. Section II sum-
marizes the related work. Section III gives a detailed problem
formulation, followed by Section IV in which we present our
approach. The analysis of our algorithm is presented in Section
V, and its numerical performance is showcased in Section
VI. The simulation and real-world experiments in Section VII
ultimately demonstrate the efficacy of our method.

II. RELATED WORK

A. Vision-based State Estimation

Vision-based state estimation has been maturing and gaining
popularity during the past decade. Powerful monocular-based
state estimation algorithms such as the classical structure
from motion algorithm and recent state-of-the-art monocular
odometry methods [3], [4] can estimate camera poses and 3D
structures. However, such algorithms cannot be directly used
for robot navigation since the absolute scale of the world is not
observable with a single camera. VIO algorithms can estimate
poses in metric scale and run up to the IMU rate. Therefore,
they are commonly used in robotics applications [5]. State-
of-the-art VIO algorithms [6]–[9] have robust performance in
high-speed 3D navigation with aggressive motions [10]–[13].

However, pure geometric-based methods have some in-
trinsic limitations: (1) The storage demand is high when
maintaining a geometric map over a long trajectory. (2)
Geometric-based features are sensitive to changes in viewpoint
or lighting conditions. (3) It is difficult to distinguish features
extracted from dynamic and static objects, leading to failures
in dynamic environments. As a result, they can accumulate
significant drift over long trajectories, which leads to unsafe
behaviors and errors in mapping. Learning-enabled approaches
are used to improve state estimation and mapping. Among
them, one popular choice is to use semantic features because
they are distinctive, informative, memory-efficient, and robust
to viewpoint changes [14]–[20]. The proposed work can be
categorized into semantic-based state estimation, where the
semantic landmarks are UGVs.

B. Active Perception

Our work falls within the class of active perception and
state estimation [21] problems. Some of the earliest methods
modeled this task using the framework of partially observ-
able Markov decision processes (POMDP) [22], [23]. This
paradigm addresses synthesizing optimal policies, that is,
functions mapping the history of observations of an agent to
the optimal control for executing a given task. However, first
examples of solutions to such problems were either developed
for linear systems with Gaussian noise [24], or problems with a

small number of states [23]. Scaling this approach to realistic,
and more complex robotic systems proved challenging. On
the theoretical side, researchers showed that this should come
as no surprise [25]: solving generic POMDPs is a PSPACE-
hard problem. Furthermore, they showed that even with infi-
nite precompute, an optimal controller, in general, might be
challenging to implement in an efficient algorithm.

As a result, the community turned to solving approximate
versions of the problem. The hope was that by acting optimally
according to a proxy objective, perception-aware behavior
would emerge. One of the first classes of methods involved
belief space planning [26]–[32]. Effectively, this meant solving
the open-loop planning version of the more difficult POMDP.
Somewhat unfortunately, [25] also showed that solving this
problem in general is NP-hard. To date, the majority of ap-
proaches based on BSP have been computationally intensive,
and often challenging to implement for real-time use.

Recently, there has been a surge in interest in perception-
aware motion planning for agile robots. Roughly speaking,
this paradigm optimizes trajectories of agents, while ensuring
they maintain a sufficient amount of perceptual information
within the sensing region of their onboard sensors [33]–[37].
However, these approaches focus on single-agent settings.
Their environment is fixed. When generalizing the methods
to perception-aware navigation for robot teams, naturally,
the same algorithms can be used for every member of the
team. However, none of these works adopt the collaborative
approach of altering the perceptual content of the environment
created by the agents themselves. This is precisely the theme
of our paper.

C. Active Team Localization and Target Tracking

There has been a substantial amount of work on the lo-
calization of robot teams using relative observation measure-
ments. Many different versions of the problem exist [38]–[42]
depending on the nature of allowed communication between
teammates, as well as the type of measurement models (e.g.
relative position, range, or bearing, etc...). Naturally, nonlinear
measurement models render the resulting inference problem
more computationally challenging. Recently, a number of
papers have proposed robust algorithms based on convex
relaxations that appear to be lossless for a non-negligible
regime of noise levels [43], [44].

Prior work has also addressed the problem of multi-robot
active SLAM [31], [45], [46], however, with several differ-
ences. For example, [31] does not leverage mutual observation
of robots to aid localization. [46] relies on features in the
environment to derive relative measurements between robots, a
step that can fail in challenging, featureless environments. [45]
assumes constant communication and perfect data association,
which are not always satisfied in real-world settings. Most
importantly, none of the former consider actively positioning
landmarks to help robots localize themselves. The work of
[47] considers a problem directly related to ours, albeit with a
small team of homogeneous robots forming a predefined shape
in 2D space. Subsequent works such as [48], [49] extend the



former, but provide no empirical or theoretical sub-optimality
results. In this work, we consider a fine-grained measure of
localization accuracy of a heterogeneous robot team based
on a minimax localization cost. Furthermore, unlike previous
works, we empirically show that a suitable gradient-descent-
based algorithm matches the output of an evolutionary method
for positioning perceptually-advantaged agents with significant
accuracy.

Last but not least, our problem is intimately related to
that of target tracking [50]–[52]. The latter problem involves
positioning the set of tracker agents to allow them to form the
best estimate of the target states. The parallel to our problem
amounts to identifying tracking agents with lidar-equipped
ones, and the targets with vision-aided agents. Typically,
tracker agents communicate among themselves in order to
leverage their collective measurements to position themselves
optimally. Our setup effectively considers the dual of this
problem. Other notable differences include the fact that we
consider a collaborative setting, in addition to allowing no
communication between agents except at the start of the
mission.

D. Sensor Selection

Optimally placing the small set of lidar-equipped agents
can be viewed as a sensor selection problem. Intuitively, this
involves choosing out of a set of possible sensor locations
the subset that gives minimal uncertainty in the estimates
of the unknown quantity being measured subject to suitable,
typically budget, constraints. In our example, the set is in fact
not discrete, but comprises a whole continuum of possible
positions in the environment in which we can place the lidar-
equipped agents. The budget comes simply from the number
of such agents at our disposal. It has been shown that approx-
imately solving the discrete version of the sensor selection
problem to an arbitrary level of suboptimality is NP-hard [53],
[54]. Notable approaches based on the greedy paradigm that
have nevertheless worked well in practice include [55]–[59].
However, we adopt a different approach based on nonlinear
optimization.

III. ACTIVE COLLABORATIVE TEAM LOCALIZATION

Our robot team is partitioned into two subsets of agents,
L and C . Agents in set L , also referred to as “L -agents”,
are expensive lidar-equipped agents that can autonomously
position themselves accurately without additional external
localization infrastructure. Set C comprises of inexpensive,
resource-constrained agents (“C -agents”) that predominantly
rely on their onboard cameras for state estimation. However,
cameras can be used to obtain accurate state estimates only
when there is a sufficient quantity of reliable visual cues in
the environment. We propose a solution for accurate team
localization robust to whether or not the latter condition
holds. In particular, our approach involves leveraging L -
agents as artificial landmark features C -agents can use for
state estimation in desired regions of space.

Figure 2: In the absence of reliable visual features or land-
marks in the environment, C -agents (UAVs) additionally trian-
gulate their positions using bearing measurements to L -agents
(UGVs). We position L -agents to minimize the localization
uncertainty (ellipses) of C -agents.

In light of the setup |L | ≪ |C | motivated by budget
considerations, it is intuitively clear that certain configurations
of L -agents are better than others. For example, positioning
them in degenerate configurations (such as a single point)
would result in worse performance than spreading them further
apart. On the other hand, placing L -agents too far would sup-
ply C -agents with bearing measurements with near-vanishing
sensitivity to change in their positions. Furthermore, tailoring
the positioning to enable accurate vision-aided localization in
one region of space might render it useless for state estimation
in another.

We therefore center our approach around a minimax op-
timization problem stated as follows. Given N representative
points of operating regions of C -agents (without loss of gener-
ality one point per each C -agent so that |C |= N), and a given
budget on the number of L -agents, say |L | ≤ M, position the
L -agents in a way that minimizes the maximum localization
uncertainty across all C -agents. Identifying C and L with [N]
and [M], respectively, and denoting the locations of C -agents
and L -agents by (xi)i∈[N] ∈ (R3)N and (z j) j∈[M] ∈ (R3)M ,
respectively, and the covariance of the resulting state estimate
at location xi by Σ(xi; z1:M), we have

Problem 1.

min
z1:M∈(R3)M

max
i∈[N]

tr( Σ(xi; z1:M) )

s.t.

||z j||2 ≤ Rmax ∀ j ∈ [M]

||z j −xi||2 ≥ Rmin ∀i ∈ [N], ∀ j ∈ [M]

The latter two constraints encode the desideratum that we
can only position L -agents in a certain region of space,
as well as the fact that no C -agent can be closer than a
minimum prescribed distance to any L -agent. We measure
the localization accuracy of each C -agent using the trace of
the covariance of its state estimate. This roughly captures its



total uncertainty across all three spatial dimensions. Overall,
our problem is novel in two ways:

1) we propose the paradigm of enabling predominantly
vision-driven robot teams to navigate perceptually-
challenging environments by using select perceptually-
advantaged teammates as visual landmarks;

2) furthermore, we model the task using a minimax active
robot positioning problem in continuous space; previous
work on the topic has typically focused on its discrete
version, without a robust minimax objective.

Remark. Two special cases of our setup deserve particular
mention. One involves positioning L -agents in order to ensure
high localization accuracy of C -agents along pre-planned
trajectories. This scenario is subsumed by Problem 1, as can
be seen by placing fictitious C -agents (Fig 3) at regular
“discretization” points along paths to be taken by “real” C -
agents. The second involves using L -agents to provide visual
cues at a well-dispersed sample of positions for the purpose
of coverage of a given environment. The latter instantiation of
Problem 1 amounts to placing fictitious C -agents at sampled
points.

Figure 3: Placing sufficiently many fictitious C -agents along
planned trajectories of real C -agents to ensure the latter have
accurate state estimates.

Regarding communication, we assume the following proto-
col. The team rallies together at the start of the mission, has
one agent solve the problem in a centralized way, communicate
the positions of L -agents to the rest of the team, and then
the mission starts. From that moment onward, no explicit
communication between teammates takes place.

IV. ACTIVE POSITIONING ALGORITHM

A. Modelling Sensing and Localization Uncertainty

The observation model of each C -agent comprises a set of
bearing measurements. In particular, C -agent i at point x ∈R3

in the vicinity of setpoint xi registers the bearing to L -agent
j at position z j ∈ R3 in the form:

yi, j = h(x,z j)+N (0, σ
2
mI3). (1)

Here h(x,z) := z−x
||z−x||2

denotes the noiseless bearing measure-
ment function. We assume sensor noise is normally distributed
with standard deviation σm > 0, and is independent across
different C -L agent pairs.

A critical aspect of our problem involves the nonlinear
sensing model in Equation 1. As a result, we now describe
the way in which C -agents translate such measurements into
estimates of their pose. We take the route based on the
paradigm of extended Kalman filtering (EKF). In particular,
when the C -agent at position x registers bearings to L -agents
at positions z1,z2, ...,zM ∈ R3, its collection of measurements
may be succinctly represented via

y1:M = H(x;z1:M)+ ε, (2)

where H(x;z1:M) = [hT (x,z1),hT (x,z2), . . . ,hT (x,zM)]T , and
ε = [εT

1 ,ε
T
2 , . . . ,ε

T
M]T are i.i.d. Gaussian random variables per

Equation 1. Assuming a N (xi, Σ̄) prior on x, the agent
approximates the bearing measurement to agent j via the
linearized measurement model

ȳi, j +∆yi, j = h(xi,z j)︸ ︷︷ ︸
=:ȳi, j

+
∂h
∂x

(xi,z j) ∆x︸︷︷︸
=:x−xi

+εi, (3)

so that its posterior distribution is approximately Gaussian
with the following information (inverse covariance) matrix

J (xi; z1:M) = Σ̄
−1 +σ

−2
m

M

∑
j=1

∂hT

∂x
(xi,z j)

∂h
∂x

(xi,z j). (4)

Recalling the objective function of Problem 1, we define

Σ(xi; z1:M) = J −1(xi; z1:M). (5)

Regarding the sensing model and pose uncertainty of every
C -agent, we make two assumptions hereon:

1) C -agents have accurate orientation estimates;
2) their onboard cameras are omnidirectional.

Remarks For the first assumption, we follow the approx-
imation made in [57]. Intuitively, it posits that if bearing
measurements arrive at a sufficiently high frequency (approx-
imately every 5 seconds in our experiments), the gyroscope
can be used to accurately estimate incremental changes in
orientation between successive keyframes. At latter points,
visual information is fused with IMU measurements to bring
the orientation uncertainty down to a negligible value. The
second assumption is valid when C -agents are equipped with
multiple cameras that together cover a 4π (in steradians) field
of view (FOV). It can also be emulated by agents equipped
with a camera with a limited FOV by periodically performing
a 2π yawing motion at specified setpoints. In our physical
experiments, we take the latter route.

B. Optimization Algorithm

Problem 1 is a challenging nonlinear optimization task.
Nevertheless, several practical approaches come to mind. One
method involves discretizing the continuous problem with
a grid of points sampled from its feasible (“obstacle-free”)
region. Starting from an empty set, this algorithm then greedily



picks a subsequent grid point that induces the maximum
decrease in the objective value, until a given number of L -
agents have been positioned. A drawback of this approach is
that it does not result in provably globally optimal solutions,
while incurring a non-negligible computational cost - typi-
cally linear in the number of discretization points. The latter
generally has to increase with the desired level of accuracy.
Another method involves a heuristic evolutionary procedure
for global optimization [60]. In spite of promising empirical
performance, this algorithm can demand long compute times
and it does not come with global optimality guarantees.
Finally, the third class of approaches includes local gradient-
descent based algorithms for smooth optimization. This class
of methods has shown impressive results, scaling to high-
dimensional optimization problems involving training neural
networks. Nevertheless, their computational performance can
vary significantly depending on the exact algorithm being
used, as well as the structural properties of the problem being
solved.

Our method belongs to the class of gradient-descent-based
approaches. However, further specific design choices are still
required. In particular, Problem 1 is a non-smooth non-convex
optimization problem. Lack of global smoothness stems from
the minimax form of the objective function that can dramati-
cally slow down the rate of convergence of local algorithms for
smooth optimization. The other challenging aspect of Problem
1 is its non-convexity. Indeed, we show there exist instances
of the problem that exhibit multiple strict local optima with
wildly different objective values. One such example is shown
in Fig. 4. In what follows, we show how to tackle each of
these hurdles in turn.

Figure 4: Two strict local minima of the objective function of
the problem involving minimizing the maximum localization
uncertainty of four C -agents operating at setpoints depicted by
green circles with the help of two L -agents. The blue local
optimum is more than 500% worse than the red local optimum.
The cross at the centroid of the rectangle is a saddle point.

To ensure our objective function is globally smooth, we
introduce two modifications to the original problem. The
first involves choosing a positive real number δ ≪ Rmin, and
modifying the noiseless bearing measurement function via:

h(z,x) =
z−x

||z−x||2
⇝ hδ (z,x) =

z−x√
||z−x||22 +δ 2

. (6)

Using the same methodology of extended Kalman filtering, we
make the corresponding changes to the posterior covariance es-
timates of agents at corresponding setpoints. For example, the
localization uncertainty of the C -agent operating at setpoint i
is modified through

Jδ (xi; z1:M) = Σ̄
−1 +σ

−2
m

M

∑
j=1

∂hT
δ

∂x
(xi,z j)

∂hδ

∂x
(xi,z j)

Σδ (xi; z1:M) = J −1
δ

(xi; z1:M).

(7)

As a result, we solve

Problem 2.

min
z1:M∈(R3)M

max
i∈[N]

tr( Σδ (xi; z1:M) )

s.t.

||z j||2 ≤ Rmax ∀ j ∈ [M]

||z j −xi||2 ≥ Rmin ∀i ∈ [N], ∀ j ∈ [M]

The second modification involves reformulating the mini-
max Problem 2, in general one with non-smooth objective,
into a smooth problem. We introduce a new decision variable
t ∈ R, and consider the following equivalent

Problem 3.

min
z1:M∈(R3)M , t≥0

t

s.t.

tr( Σ(xi; z1:M) )≤ t ∀i ∈ [N]

||z j||2 ≤ Rmax ∀ j ∈ [M]

||z j −xi||2 ≥ Rmin ∀i ∈ [N], ∀ j ∈ [M]

(8)

Intuitively, the fact that t is being minimized in conjunction
with the first set of constraints will effectively make it take
the value of the objective of Problem 2. Problem 3 is still a
non-convex optimization problem. For this reason, we solve it
using an interior point solver, IPOPT [61], to which we pass
analytic derivatives of constraints of zeroth, first, and second
orders. Here we leverage the fact that the function

J → tr(J−1) (9)

is a smooth map on the space of positive definite matrices (in
this case in R3×3). Furthermore, assuming that J is a smooth,
positive definite function of a set of parameters θ ∈ Rk, we
have the following relations

∇θi tr(J−1(θ)) = (−1)tr(J−2(θ)
∂J
∂θi

(θ)), (10)

and

∇
2
θi,θ j

tr(J−1(θ)) =

−tr(J−2(θ)
∂ 2J

∂θi∂θ j
(θ))+2tr(J−2(θ)

∂J
∂θi

(θ)J−1(θ)
∂J
∂θi

(θ))

(11)



V. ALGORITHM ANALYSIS

A. Price of Smoothing

We now elaborate on our choice of δ > 0 in Equation 6.
Indeed, any δ > 0 introduces fictitious information about the
range from a C -agent at position x to a L -agent at position
z. This follows from the fact that the directional derivative of
hδ along the bearing vector z−x

||z−x||2
is non-vanishing whenever

δ > 0.
However, at a fixed range (i.e. fixed ||z−x||2), the influence

of δ decreases as δ ↓ 0. Intuitively, this implies that at any
point in feasible regions of Problems 1 and 2 (which coincide),
the values of the objective functions of the two problems match
each other in the limit δ ↓ 0. At this stage two questions
remain:

1) determine a suitable range (i.e. upper bound) of δ

2) quantify the suboptimality of solving Problem 2 in place
of Problem 1 as a function of δ .

To answer these questions, we develop a result in the active
robot positioning problem that is robust to measurement model
mismatch. The key result that enables such analysis is the
following

Theorem V.1. Consider the setup of Problems 1 and 2. Let
η > 0 and ζ > 1 be an arbitrary pair of real numbers. Define

s0 =
η

η +1
R2

min
M

σ
2
m(1+ζ

2). (12)

Then, choosing any δ ∈ (0,Rmin/ζ ), we have the implication

∀x ∈ R3 : tr(Jδ (x;z1:M)−1) = s ≤ s0

⇒ s
1+η

≤ tr(J0(x;z1:M)−1)≤ s(1+η).
(13)

Furthermore, the same implication holds with the roles of Jδ

and J0 reversed.

Proof. See Appendix in Section X.

Corollary 1. Within the setup of Theorem V.1, choose any
δ ∈ (0,Rmin/ζ ). Denote the values of Problems 1 and 2 by V 0

and V δ , respectively. Suppose the sublevel set

S := {z1:M | V δ (z1:M)≤ s0} (14)

is not empty. Then the optimal solution of Problem 2 is at most
a (1+η)2-suboptimal solution of Problem 1.

Proof. See Appendix in Section X.

The significance of Corollary 1, is that if there exists a
solution to the Problem 2 with a sufficiently low objective
value, then that solution is also approximately optimal for the
original problem. To choose an appropriate value of ζ , we set
s0 to be the square of the largest σ -uncertainty ball of each
of the C -agents that we are willing to tolerate. Naturally, this
quantity can depend on the scale of the environment, and its
density of obstacles. Here we call it Rtol . We then set

R2
tol ≤

η

η +1
R2

min
M

σ
2
m(1+ζ

2), (15)

and so it is enough to choose

ζ
2 =

(
Rtol

Rmin

)2

Mσ
−2
m

2
η
. (16)

Some “physically reasonable” values in the expression above
involve setting

Rtol

Rmin
→ 10, M → 10,σm → 10−2,η → 10−1 (17)

thus leading to
ζ

2 = 2×109. (18)

In practice, we cap ζ to 105 out of concern for numerical
precision.

B. Computational Complexity

The computational complexity of the algorithm is deter-
mined by two factors. Firstly, it depends on the complexity
of computing derivatives of the desired order. In our case, all
derivatives of order up to two are computed in O(M2N) time.
Second, both the number of iterations, as well as the effort of
computing gradient descent steps within the IPM influence the
running time of the algorithm. The total number of variables
and constraints is O(MN), and so, roughly speaking, every
gradient descent step is computed by inverting a square matrix
of dimension O(MN). For dense matrices, this is done in
time at most O((MN)3). However, IPOPT can exploit the
sparsity pattern of the constraints to solve such systems more
efficiently. Nevertheless, we leave more refined (favorable)
estimates of running time for future work. Assuming the total
number of iterations is K, the running time of the algorithm
is of order at most O(K(MN)3).

C. Limitations

Despite encouraging performance on random data (see Table
I), our numerical algorithm is not perfect. Firstly, as a local-
optimization-based method, it can get stuck in suboptimal local
minima, such as in scenarios shown in Fig. 4. Second, our
algorithm is a centralized solution. Although it empirically
scales favourably with the size of robot teams we consider,
we note that the current method cannot handle scenarios with
an a priori unknown number of spatially distributed C -agents.
We leave addressing these limitations for future work.

VI. NUMERICAL ANALYSIS

In this section, we test the numerical performance of our
algorithm. We compare it against two baseline approaches,
one a greedy approximate algorithm, and the other a heuristic
evolutionary procedure for global optimization [60] as imple-
mented in the package NLOPT [62]. First, we look at the
morphology of solutions generated by our algorithm, and then
turn to comparing its accuracy and time efficiency compared
to the other two methods.

We begin by looking at the form of solutions of several
robot team problems with the following parameters. The prior
covariance is set to Σ→ 30×I3, and the measurement standard



(a) Eight C -agents flying in
formation.

(b) Six C -agents on two
straight line paths.

(c) Eight C -agents ran-
domly positioned inside the
upper hemisphere.

Figure 5: Examples of L -agents positioned by our method. Blue dots are centered on each C -agent/setpoint, while the red
stars denote L -agents. Orange lines show bearings from one of the C -agents to all L -agents.

N 5 10 20
M 2 5 10 2 5 10 2 5 10

ours −0.002 −0.01 −0.02 −0.001 −0.01 −0.03 −0.002 −0.01 −0.03
greedy 0.25 0.48 0.54 0.23 0.48 0.52 0.25 0.37 0.41

Table I: The suboptimality of the approaches for various team sizes. We measure the suboptimality (loss of accuracy) of a
solution in terms of its relative value compared to the objective achieved by the evolutionary optimization scheme.

deviation σm → 0.1. We consider three problems, each involv-
ing three L -agents, but varying numbers and configurations
of C -agents. Some characteristic solutions appear in Fig. 5.

A. Accuracy

Here we show the comparison of the objective values
achieved by our algorithm and the two alternate approaches
on a range of different problems, differing in the number of
agents, and the amount of noise in the sensor measurements.

First, we set the noise to a set value, namely Σ → 30× I3
and σm → 0.1, and vary the size of the team. In particular,
we look at the performance of the algorithms as the number
of C -agents (denoted by N) and L -agents (denoted by M)
varies according to N ∈ {5,10,20} and M ∈ {2,5,10}. For
every (N,M) pair, we evaluate each algorithm on ten different
random configurations of C -agents, sampled from a sphere
of radius 40 m, and perform ten independent algorithm runs
for each instance. Table I shows that the second-order method
attains objectives matching those of the evolutionary algorithm
on random data, and consistently outperforms the greedy
approach - in some cases by as much as 50%.

Second, we test the accuracy of the algorithm on a problem
with N = 10 C -agents and M = 5 L -agents, and varying
amounts of sensing noise. For each level of noise, we run
each algorithm on ten different random instances, generated as
before. Table II shows that our algorithm produces solutions
that match the quality of those output by the evolutionary
optimization scheme. Similarly as before, our algorithm con-

σm 1 2−1 2−2 2−3 2−4 2−5

ours −0.0002 −0.003 −0.003 −0.013 −0.025 −0.043
greedy 0.039 0.116 0.272 0.417 0.581 0.624

Table II: Suboptimality of our algorithm and the greedy algo-
rithm with respect to the solution produced by the evolutionary
algorithm.

sistently outperforms the greedy baseline, sometimes by as
much as 50%.

B. Compute Speed

Here we show the timings of the three procedures on a
problem involving ten C -agents and five L -agents. Table II
shows that our approach produces solutions that match the
solution of the evolutionary algorithm to two significant digits
at a fraction of the running time, as illustrated in Table III.

M 2 5 10
ours 0.079 0.108 0.218

greedy 1.072 2.605 4.881
global 0.663 4.970 30.029

Table III: Computation time (in seconds) of our algorithm and
the two alternate approaches.

VII. EXPERIMENTS

The setup for our simulation and real-world experiments
involves a team of multiple UGVs and UAVs. To analyze the



Figure 6: Active collaborative team localization factor
graph representation. In our experiments, since the UGVs
are static, each UGV is assigned exactly one state in the factor
graph.

influence of the degree of structure of the environment and test
the robustness of the system, we performed experiments across
three types of environments, i.e., structured, semi-structured,
and unstructured. We keep the same mission specification for
real-world and simulated experiments in order to analyze the
influence of real-world noise in controlled settings. Concretely,
the UAV’s waypoints are identical in real-world and simulation
experiments. We identify the concept of waypoints and set-
points from Section III. Instead of executing these waypoints
once, the UAV is commanded to execute multiple rounds so
that we can evaluate the robustness of our method for long-
range missions.

The UGVs serve the role of L -agents, and the UAV that
of a C -agent. The UGVs move along the ground plane at all
times. To ensure the robustness of the state estimation module
for our team of agents, we add a further constraint stipulating
that at each setpoint, there must exist one yaw angle from
which the UAV can view all UGVs. Introducing additional
variables, the unit heading vectors n1,n2, ...,nN ∈ S1 along
such yaw angles, the constraint-augmented problem becomes:

min
z1:M∈(R2)M , n1:N∈(S1)N

max
i∈[N]

tr( Σ(xi; z1:M) )

s.t.

||z j||2 ≤ Rmax ∀ j ∈ [M]

||z j −xi||2 ≥ Rmin ∀i ∈ [N], ∀ j ∈ [M]

∠(ni, z j −xi)≤
α

2
∀i ∈ [N], ∀ j ∈ [M].

(19)
The solution proceeds similarly to before. The addition of

the aforementioned set of constraints translates into

ni · (z j −xi)≥ cos
(

α

2

)√
||z j −xi||22 +δ 2, (20)

which is a smooth approximation that becomes ideal in the
limit as δ ↓ 0. Larger δ provides more conservative approxi-
mations of the field of view.

The rest of this section is organized as follows. The first
subsection provides an overview of the software-hardware sys-
tem used for our experiments. The second subsection presents
simulation experiments, followed by real-world experiments.

A. System overview

System overview (hardware): In real-world experiments,
our system consists of multiple UGVs and a UAV as shown

Figure 7: Velocity profiles for real-world experiments (top)
and simulated experiments (bottom) illustrating aggressive
maneuvers in experimentation and simulation. The curves
show the velocities along X (dotted red), Y (solid green),
and Z (dash-dotted blue) axes for flights in the unstructured
environment. The vertical axis is the velocity, which ranges
from -10 m/s to +10 m/s. The horizontal axis is the timestamp
in seconds. The UAV accelerates drastically and frequently.
Such aggressive motions pose significant challenges to state
estimation.

in Fig. 1. The UGVs are equipped with ouster OS1-64 lidars.
The UAV platform is equipped with a hardware-synchronized
collection of greyscale stereo cameras, an IMU, and an RGB
monocular camera. The greyscale stereo cameras and the IMU
are used for stereo VIO [7]. In addition, the UAV platform also
has an ouster OS1-64 lidar, but it is only used for obstacle
avoidance; the UAV’s localization relies only on cameras
and the IMU. Our UGV and UAV platforms are capable of
autonomous navigation in cluttered and GPS-denied environ-
ments using only onboard sensing and computation. Note that
only the monocular RGB camera is used for detecting UGVs
and generating bearing measurements.

We carry out two sets of simulation experiments. In the first
set, we have 1 UAV with 2 UGVs and 1 UAV with 3 UGVs.
This allows us to study how much performance gain we can
obtain by adding more UGVs into the environment. In the
second set, we have 10 UAVs with 10 UGVs, which allows
us to analyze how well our method can generalize to larger
robot teams. To simulate real-world perception, we add noise
to the UAV’s camera measurements and odometry, as well as
introducing dynamic objects in the environment.

System overview (estimation pipeline): Our estimation
pipeline builds upon a factor-graph-based method [63], [64],
which takes in VIO estimates and bearing measurements and
outputs the UAVs’ SE3 pose estimates. The choice of a factor
graph approach over an EKF for the experiments is due to
its better accuracy and consistency. The structure of our factor
graph is shown in Fig. 6, which consists of two kinds of nodes
(UAV and UGV poses) and three kinds of factors (UAV odom-
etry factors, UAV-UGV bearing factors, and UGV pose prior
factors). For the UAV odometry factors, we use the stereo-
MSCKF algorithm [7] to estimate the relative transformation
between two consecutive key poses, i.e., pvio

t ⊖pvio
t−1.

The generation of bearing factors is different between



Environment / Traj. Length Drift Red. Ours Drift (X/Y/Z) (m) Rand. UGVs Drift (X/Y/Z) (m) VIO Drift (X/Y/Z) (m)
Structured (2 UGVs) / 1.4 km 86.29% 2.92 ( -1.21 / -1.61 / +2.11 ) 4.16 ( -3.70 / -0.33 / +1.87 ) 21.27 ( -12.74 / -8.85 / +14.56 )
Structured (3 UGVs) / 1.4 km 96.19% 0.81 ( -0.77 / +0.20 / +0.16 ) 2.84 ( -1.36 / -2.47 / +0.30 ) 21.27 ( -12.74 / -8.85 / +14.56 )

Semi-Structured (2 UGVs) / 1.0 km 86.40% 3.21 ( -0.01 / -2.73 / -1.68 ) 15.00 ( -9.38 / +11.69 / +0.70 ) 23.57 ( -21.85 / -6.29 / +6.22 )
Semi-Structured (3 UGVs) / 1.0 km 88.38% 2.74 ( +0.15 / -1.69 / -2.15 ) 8.01 ( -6.20 / +5.04 / +0.59 ) 23.57 ( -21.85 / -6.29 / +6.22 )

Unstructured (2 UGVs) / 1.4 km 60.64% 7.50 ( -2.77 / +6.95 / -0.51 ) 16.04 ( -2.45 / +15.85 / -0.37 ) 19.05 ( -1.15 / +19.01 / +0.56 )
Unstructured (3 UGVs) / 1.4 km 74.40% 4.88 ( -1.77 / +4.10 / -1.96 ) 11.53 ( -2.91 / +11.12 / -0.94 ) 19.05 ( -1.15 / +19.01 / +0.56 )

Figure 8: Quantitative results for Unity-based photo-realistic simulation experiments. The performance improvement achieved
by detecting and using UGVs as bearing constraints (3rd column) over using VIO alone (5th column) is shown in the 2nd
column. All flight missions are autonomous with aggressive motions and a maximum design velocity of 13 m/s, as shown in
the example in Fig. 7. The average drift reduction is 77.74% with 2 UGVs and 86.32% with 3 UGVs across all environments.
Random positioning of UGVs produces much worse results (4th column) than our method. Therefore, the proposed method is
superior to using VIO alone as well as randomly positioning UGVs.

UAV Index / Traj. Length Drift Red. Ours Drift (X/Y/Z) (m) VIO Drift (X/Y/Z) (m)
1st / 0.3087 km 75.35% 1.31 ( +1.00 / -0.83 / +0.12 ) 5.29 ( +0.46 / -5.25 / -0.51 ))
2nd / 0.3835 km 80.88% 1.80 ( -1.57 / +0.74 / -0.46 ) 9.39 ( -8.44 / +3.99 / -1.00 )
3rd / 0.9042 km 62.68% 4.91 ( +0.50 / -4.88 / -0.19 ) 13.15 ( -2.40 / -12.33 / -3.90 )
4th / 0.1232 km 57.73% 0.82 ( -0.30 / -0.01 / +0.76 ) 7.30 ( +1.47 / -7.13 / +0.51)
5th / 0.3353 km 60.04% 2.77 ( -2.67 / -0.47 / -0.58 ) 6.94 ( -5.67 / -3.83 / -1.15 )
6th / 0.1947 km 68.22% 2.98 ( +1.05 / -2.78 / -0.18 ) 9.37 ( -5.17 / -7.73 / -1.12 )
7th / 0.5200 km 81.69% 1.60 ( -1.12 / +1.11 / -0.26 ) 8.73 ( -6.21 / +6.08 / +0.80 )
8th / 0.3310 km 62.98% 2.73 ( -1.24 / +2.39 / +0.43 ) 7.37 ( -6.04 / +4.15 / +0.74 )
9th / 0.5872 km 79.10% 2.59 ( -1.69 / -1.82 / -0.73 ) 12.39 ( +1.17 / -12.07 / +2.52 )

10th / 0.4848 km 86.61% 1.28 ( -0.60 / -1.13 / +0.05 ) 9.56 ( +3.54 / -8.81 / -1.13 )

UAVs Drift Red. Mean Drift Red. Std. Dev. Traj. Length Median Traj. Length Sum
1st-10th 71.50% 9.85% 0.3594 km 4.1726 km

Figure 9: Left: Quantitative results for simulation experiments with 10 UAVs and 10 UGVs in the unstructured
environment. The average drift correction across all UAVs is 71.50%. The median trajectory length for each UAV is 359.4
m, which is significantly shorter than trajectories in Fig. 8. This leads to a smaller VIO drift and thus less room for drift
reduction. The sum of all UAVs’ trajectories is 4.2 km. Right: Trajectories for all 10 UAVs. Each UAV operates at a slightly
different altitude and in a different part of the environment. Red stars show the corners of the environment.

real-world and simulation experiments. For simulation ex-
periments, the bearing measurements are generated by first
calculating the relative bearing based on the ground-truth UGV
and UAV poses and then adding Gaussian noise. For real-
world experiments, the bearing factors are based on UGV
detections. Since object detection is not the focus of our
work, we put colored flags on the UGVs and detect them by
image processing techniques including color filtering, opening,
connected component analysis, and bounding box fitting. Data
association is then carried out by projecting the 3D positions of
the UGV centers back onto the image plane. The camera pose
used during this projection process is p̂t = pg

t−1⊕(pvio
t ⊖pvio

t−1),
i.e., the composition of the latest key pose from the factor
graph (pg

t−1) and the relative motion estimated by the VIO.

The UGV pose prior factor is generated by integrating
poses estimated by a state-of-the-art lidar-inertial odometry
algorithm [65]. Since the UGVs’ trajectories are much shorter
in distance and less aggressive in motion, the lidar-inertial
odometry can estimate their poses with only centimeter-level
drift, which is several orders of magnitude smaller than the
UAV’s VIO drift. We use the GTSAM library [63], [64] as

the backend.

B. Simulation Experiments

Figure 10: Simulation experiment environments: Structured
(left), semi-structured (middle), unstructured (right).

Experiment environments: We use a custom Unity-based
simulator. The simulator is integrated with ROS and can simu-
late photorealistic sensor data such as RGB and depth images,
and lidar point clouds. We choose the simulation environments
that approximate the real-world experiment environments, as
shown in Fig. 10. The structured environment is a city-like
environment. The semi-structured environment is a rural area
with flooded grounds and some structures like farmhouses,
bridges, and cars. The unstructured environment is a sparse
forest. These simulation environments have dynamic objects
such as grass, water, and leaves.



Environment / Traj. Length Drift Reduction Ours Drift (X/Y/Z) (m) VIO Drift (X/Y/Z) (m)
Structured / 2 km 42.30% 4.49 ( +4.22 / +0.62 / -1.41 ) 7.79 ( +7.02 / +2.29 / -2.47 )

Semi-Structured / 1 km 68.28% 1.85 ( +0.46 / +0.27 / -1.77 ) 5.83 ( +3.10 / +4.26 / -2.49 )
Semi-Structured Aggressive / 2.5 km 70.89% 3.66 ( -1.58 / +3.17 / -0.92 ) 12.57 ( +2.49 / -7.98 / -9.39 )

Unstructured / 2.5 km 79.08% 0.70 ( +0.69 / +0.09 / +0.06 ) 3.34 ( -0.78 / -2.90 / -1.46 )
Unstructured Aggressive / 3 km 83.37% 2.80 ( -0.80 / +2.68 / -0.05 ) 16.82 ( -13.22 / -10.08 / -2.58 )

Figure 11: Quantitative results for real-world experiments. The performance improvement by our method is shown in the
2nd column. The average drift reduction is 68.78% with 2 UGVs. Going from structured to unstructured environments, UGV
detection becomes increasingly reliable. This is due to numerous false positives in the structured environment caused by objects
with similar appearance to the UGV, such as cars, buses, and fire hydrants. In contrast, there are much fewer false positives
in the unstructured environment. Furthermore, in unstructured environments, the VIO becomes less reliable due to the lack of
static and reliable geometric features. As a result, the performance gain from the UGV bearing measurements is much more
significant in unstructured environments. The performance gain in the real world with 2 UGVs is ∼10% lower than in the
simulation. One major difference we observe is that, in simulation, although we add noise to the bearing measurements, the
UGV detection and data association are noise-free. This also shows the importance of accurate and robust UGV detection and
data association. Improving these will be the future work of this paper.

Figure 12: Simulation stereo images and feature extraction
example. The simulated images are photo-realistic. The plot is
generated by the stereo-MSCKF algorithm [7], where features
extracted and tracked by the VIO are illustrated by green dots.
Some features are extracted from dynamic objects (e.g., tree
leaves, grass, and water), leading to additional drifts in VIO.

Quantitative results and analysis: The results of simula-
tion experiments are shown in Fig. 8. We use our autonomous
flight software stack [1] in the simulator to accomplish all
these flight missions. The trajectory planner is set to have a
maximum acceleration of 9.90 m/s2 (∼1g) and a maximum
velocity of 13 m/s. Such aggressive motions and the simulated
noisy visual perception lead to significant VIO drifts, as shown
in the last column of Fig. 8. An illustration showing the
aggressive motions of one of the simulated experiments is in
Fig. 7.

The second column of Fig. 8 shows that by using our
method, the VIO drifts are significantly reduced. The drift
reduction is consistent across all environments. With 2 UGVs,
the drift is reduced by 77.74%. With 3 UGVs, the position
drift is reduced by 86.32%.

Such drastic drift reduction results from optimizing the
positions of UGVs using our method, and cannot be obtained
by merely introducing them into the environment at arbitrary
locations. To show this, we randomly position the UGVs
within the region enclosed by the UAV’s waypoints. The UAV
is commanded to execute the exact same missions, and uses
the same factor graph estimation pipeline. The results are
shown in the third column of Fig. 8. Our method consistently
outperforms this random positioning method by a significant

margin, resulting in 59.43% less drift on average across all
experiments.

With larger UAV and UGV teams, the results are shown in
Fig. 9. Our algorithm can position the UGVs in a configuration
so that the drift of each of the 10 UAVs is drastically reduced.
The average drift reduction is 71.50%. Compared to results in
Fig. 8, the drift reduction is slightly smaller. This is a result of
two factors: First, the average trajectory length of experiments
in Fig. 8 is 304% the average trajectory length of experiments
in Fig. 9. Since the VIO estimates the relative motion w.r.t.
the previous time step, the errors in pose estimates accumulate
over time. On the contrary, our method utilizes measurements
from UGVs which can provide global correction to the odom-
etry drift. Therefore, the longer the flight trajectory, the bigger
drift reduction is expected. Second, even though we have more
UGVs in Fig. 9, the UAV to UGV ratio is smaller. This means
that on average fewer UGV resources are allocated for each
UAV.

This set of simulation experiments demonstrates that our
proposed method can consistently help the UAVs minimize
their odometry drift, across all environments and flight mis-
sions. The corrected drift is an order of magnitude smaller
than the raw VIO. Such drastic drift correction is critical when
UAVs execute autonomous flight missions at scale.

C. Real World Experiments

Experiment environments: To quantitatively verify the
performance of our system, we perform experiments across
multiple real-world scenarios, including an unstructured grass-
covered area, an open structured area, and a moderately
cluttered parking lot. To ensure that the UAV has the desired
maneuvers (e.g., aggressive motions, landing at exactly the
same position as takeoff), we manually piloted the UAV to fly
through the waypoints. An illustration of these environments
is shown in Fig. 13.

Quantitative results and analysis: The real world experi-
ment results are shown in Fig. 11. The drift reduction in the
unstructured environment is most significant, with an average



Figure 13: Real world experiment environments: Structured
(left), semi-structured (middle), unstructured (right).

reduction of 81.23%. A counter-intuitive result is that the
resulting drift using our method decreases with the increase
of the unstructuredness of the environment. This is mainly
due to false data association since the structured environment
has objects with similar colors as our UGV marker flag
colors (buses, fire hydrants, construction barrels, etc.). On the
contrary, the unstructured environment provides good contrast
in color since the majority of the environment is covered
by green grass, as shown in Fig. 13. This can be addressed
by using a better object detector and a more robust data
association strategy.

To sum up, from multiple long-range UAV flight experi-
ments in environments with a large variance in appearance,
clutteredness, and scale, we show by using UGV detections as
bearing constraints, the UAV’s state estimation is significantly
improved. Such improvement is consistent across all scenarios,
but most significant when the UGVs are observed more
frequently, and data association is more reliable. This indicates
that the theoretical and algorithmic aspects of our system are
correct and effective, and the system is robust to real-world
noise.

VIII. DISCUSSION

Throughout the experiments, we have demonstrated the
proposed method’s robustness and performance across various
environments. Here, we will present its potential applications.

Coverage problem: The missions demonstrated in our exper-
iments all had prescribed setpoints for UAVs. However, since
our algorithm’s computational complexity is not dominated
by the number of UAVs, it can be used in the coverage
problem where the robot team must cover and map a given
region. The user can specify the environment, and a sampling-
based method can be used to determine the positions of
UAVs’ setpoints Fig. 14. The UGVs will be positioned by
the proposed method based on these setpoints to improve the
UAVs’ localization accuracy.

Figure 14: Coverage application example.

Online active collaborative localization: In our current
experiments, we assumed that there was no communication
during the mission execution. However, when the robots are

allowed to communicate, our method can enable the UGVs to
adapt their positions dynamically based on the performance
of the collaborative localization algorithm using feedback of
the errors in the trajectories of UAVs. Specifically, when this
happens, the UAVs can inform the UGVs to actively relocate
themselves using the proposed method to minimize the UAVs’
localization uncertainties.

Robust perception in perturbed environments: Another im-
portant application of our method is to the problems where the
environments are susceptible to changes. For example, some
landmarks may be destroyed or disappear as time passes (e.g.
rocks disappear with the tide, and buildings might get de-
stroyed by earthquakes). It is challenging for UAVs to predict
which part of the environment is perturbed. Our method offers
UAVs a resort when they are uncertain about their localization.

IX. CONCLUSION

This paper proposes an algorithm for active collaborative
localization of a large number of SWAP-constrained robots
by optimally positioning (and potentially navigating) a small
number of more capable teammates. Specifically, we consider
a team of aerial robots with cameras and IMUs that can
leverage measurements of ground vehicles equipped with
heavier sensors and processors. Numerical results show that
our smooth optimization approach for the underlying active
robot positioning problem outperforms the greedy algorithm
in terms of accuracy, and matches the objective value of
a computationally intensive heuristic evolutionary algorithm
for global optimization while running in real time. Through
experiments in photorealistic simulation environments, the
proposed method reduces the UAV odometry drift by 90% with
3 UGVs. It also outperforms randomly positioning UGVs, and
shows a robust and significant reduction in drift in real-world
experiments. The performance of our system is consistent
throughout a range of scenarios that feature large variations
in robot motions as well as the amount of structure in the
environment. This robust and drastic improvement in state
estimation enables long-range autonomous navigation. The
proposed active collaborative localization method can be used
in various real-world applications in which we encounter
environments without texture or features for aerial flight.
Future work will address the use of errors in localization as a
feedback mechanism to modify trajectories for the C -agents
and allow bidirectional flow of information between C -agents
and L -agents. We also acknowledge the need to improve the
robustness of our method to potential errors in data association
and scale up to a bigger team of robots.
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X. APPENDIX

We split the proof of Theorem V.1 into two claims. Roughly
speaking, our reasoning hinges on the fact that the trace

of the covariance matrix is just the sum of inverses of the
eigenvalues of the information matrix. The rest of the proof
involves analyzing how the sum of inverses of a sequence
of positive real numbers behaves under suitable perturbations.
This is precisely the content of the following

Claim 1. Let δ ,η > 0 be a fixed pair of real numbers, and
define

s0 =
η

η +1
δ
−1. (21)

For any pair of sequences (λk)
d
k=1, (λ̃k)

d
k=1 ∈ (0,∞)d such that

|λ̃k −λk| ≤ δ ∀1 ≤ k ≤ d, we have the implication

d

∑
k=1

1
λk

= s ≤ s0 ⇒ s
1+η

≤
d

∑
k=1

1
λ̃k

≤ s(1+η). (22)

Proof. To prove the inequality on the right, it suffices to show
d

∑
k=1

1
λk

= s ≤ s0 ⇒
d

∑
k=1

1
λk −δ

≤ s(1+η). (23)

Indeed, since λk > 0 ∀k, we have

1
λk

≤ s ⇒ λk ≥ s−1 ≥ s−1
0 =

1+η

η
δ > δ ∀k, (24)

showing that the expression on the right of Equation 23 is well-
defined. Now, consider the following optimization problem

sup
(λk)

d
k=0∈(0,∞)d

d

∑
k=1

1
λk −δ

s.t.
d

∑
k=1

1
λk

= s.

(25)

To show that it is bounded above by (1+η)s, upon introducing
variables ak := λ

−1
k , we reformulate it as follows

max
(ak)

d
k=0∈[0,s]d

d

∑
k=1

1
a−1

k −δ

s.t.
d

∑
k=1

ak = s.

(26)

We note that the function f (x)= 1
x−1−δ

is convex on x∈ [0,s]⊆
[0,δ−1] due to f ′′(x) = 2δ

(1−xδ )3 > 0 on the the mentioned
interval. As a result, Problem 26 involves maximizing a convex
function subject to a simplex constraint. Hence, an optimum is
attained at one of the extreme vertices of the feasible region,
which all take the form (s,0, . . . ,0) up to a permutation of
indices. In any case, all such extreme points have the objective
value

1
s−1 −δ

=
s

1− sδ
≤ s

1− s0δ
= (1+η)s, (27)

thus proving the desired inequality.
Similarly, to prove the inequality on the left, it suffices to

show
d

∑
k=1

1
λk

= s ≤ s0 ⇒
d

∑
k=1

1
λk +δ

≥ s
1+η

. (28)

http://github.com/stevengj/nlopt


Now, consider the following optimization problem

inf
(λk)

d
k=0∈(0,∞)d

d

∑
k=1

1
λk +δ

s.t.
d

∑
k=1

1
λk

= s.

(29)

To show that it is bounded below by s
1+η

, upon introducing
variables ak := λ

−1
k , we reformulate it as follows

min
(ak)

d
k=0∈[0,s]d

d

∑
k=1

1
a−1

k +δ

s.t.
d

∑
k=1

ak = s.

(30)

We note that the function f (x) = 1
x−1+δ

is concave on x ∈
[0,s] ⊆ [0,δ−1] due to f ′′(x) = −2δ

(1+xδ )3 < 0. As a result,
Problem 30 involves minimizing a concave function subject
to a simplex constraint. Hence, an optimum is attained at one
of the extreme vertices of the feasible region, which all take
the form (s,0, . . . ,0) up to a permutation of indices. In any
case, all such extreme points have the objective value

1
s−1 +δ

=
s

1+ sδ
≥ s

1+ s0δ
=

1+η

1+2η
s ≥ s

1+η
, (31)

thus proving the desired inequality.

Claim 2. Consider an arbitrary δ > 0, x ∈ R3, and suppose

δ

||x− z j||2
≤ ζ

−1 ∀1 ≤ j ≤ M, (32)

for some ζ > 0. Then,

||Jδ (x;z1:M)−J0(x;z1:M)||2 ≤
M σ−2

m

min
j≤M

||x− z j||22

1
(1+ζ 2)

.

(33)

Proof. Letting ∆ j = ||z j −x||2 ∀1 ≤ j ≤ M, we have

Sδ (x;z j) :=
∂hT

δ

∂x
(x,z j)

∂hδ

∂x
(x,z j)

=
1

∆2
j +δ 2 (I3 −

∆2
j +2δ 2

(∆2
j +δ 2)2 (z j −x)(z j −x)T ).

(34)

By noting that the family of symmetric matrices (Sδ (x;z j))δ∈R
may be jointly diagonalized with respect to an orthonormal
basis containing z j−x

∆ j
, and noting that the spectral norm of a

symmetric matrix is just the maximum absolute value of its
eigenvalues, we get

||Sδ (x;z j)−S0(x;z j)||2 ≤ ∆
−2
j

1
1+ζ 2 . (35)

By the triangle inequality, we have

||Jδ (x;z1:M)−J0(x;z1:M)||2
σ
−2
m

= ||
M

∑
j=1

(Sδ (x;z j)−S0(x;z j))||2

≤
M

∑
j=1

||(Sδ (x;z j)−S0(x;z j))||2

≤
M

∑
j=1

∆
−2
j

1
1+ζ 2

≤ M
min
j≤M

∆2
j

1
1+ζ 2 ,

(36)
as desired.

Now we leverage Claims 1 and 2 to provide a proof of
Theorem V.1.

Proof. (of Theorem V.1) Since the prior covariance is positive
definite, Jδ ≻ 0 for all δ . Next, denote the eigenvalues of Jδ

in decreasing order by λ δ
1 ≥ λ δ

2 ≥ λ δ
3 > 0. It then follows that

tr((Jδ )
−1) =

3

∑
j=1

1
λ δ

j
. (37)

By Weyl’s inequality [66], we have

|λ δ
j −λ

0
j | ≤ ||Jδ −J0||2 ≤

M σ−2
m

R2
min

1
(1+ζ 2)

∀ j ≤ 3, (38)

where the latter inequality follows from Claim 2. As a result,
making substitutions

λ j → λ
δ
j , λ̃ j → λ̃

δ
j , δ → M σ−2

m

R2
min

1
(1+ζ 2)

(39)

in Claim 1, we get that for s0 given by Equation 12, the
theoreem holds.

Finally we turn to proving Corollary 1 with the help of an
additional claim.

Claim 3. Denote the value of Problem 2 at a given z1:M for
a given δ by V δ . Within the same setup as for Theorem V.1,
we have

V δ = s ≤ s0 ⇒ V δ

1+η
≤V 0 ≤V δ (1+η). (40)

By symmetry the same implication holds with the roles of V δ

and V 0 reversed.

Proof. To prove the right-hand inequality, note that by the
definition of V δ , we have ∀i ≤ N

tr(Jδ (xi;z1:M)−1)≤Vδ = s ≤ s0. (41)

Hence, by Claim 1, we have ∀i ≤ N

tr(J0(xi;z1:M)−1)≤ tr(Jδ (xi;z1:M)−1)(1+η)≤ (1+η)V δ ,
(42)



and by taking the maximum of the latter inequality over i≤N,
the inequality follows. To prove the left-hand inequality, again
by definition, there exists an i ≤ N such that

tr(Jδ (xi;z1:M)−1) =V δ = s ≤ s0. (43)

Hence, by Claim 1, we have

V 0 ≥ tr(J0(xi;z1:M)−1)≥ tr(Jδ (xi;z1:M)−1)

1+η
=

V δ

1+η
,

(44)
as desired.

Proof. (of Corollary 1) Let zδ
∗ and z0

∗ be optimal solutions for
Problem 2 and Problem 1, respectively. By assumption, we
have

zδ
∗ ∈ S ⇒ V δ (zδ

∗ )≤ s0. (45)

By Claim 1, we then have

V 0(zδ
∗ )≤ (1+η)V δ (zδ

∗ )≤ (1+η)s0. (46)

We now distinguish two cases. First, if V 0(z0
∗) > s0, the

inequality trivially holds. Otherwise, V 0(z0
∗)≤ s0, and by the

previous claim, we have

V 0(z0
∗)≥

V δ (z0
∗)

1+η
≥ V δ (zδ

∗ )

1+η
≥ V 0(zδ

∗ )

(1+η)2 , (47)

and so the result follows.


	Introduction
	Related Work
	Vision-based State Estimation
	Active Perception
	Active Team Localization and Target Tracking
	Sensor Selection

	Active Collaborative Team Localization
	Active Positioning Algorithm
	Modelling Sensing and Localization Uncertainty
	Optimization Algorithm

	Algorithm Analysis
	Price of Smoothing
	Computational Complexity
	Limitations

	Numerical Analysis
	Accuracy
	Compute Speed

	Experiments
	System overview
	Simulation Experiments
	Real World Experiments

	Discussion
	Conclusion
	References
	Appendix

