Robotics: Science and Systems VI
Reinforcement Learning to adjust Robot Movements to New Situations
J. Kober, E. Oztop and J. PetersAbstract:
Many complex robot motor skills can be represented using elementary movements, and there exist efficient techniques for learning parametrized motor plans using demonstrations and self-improvement. However, in many cases, the robot currently needs to learn a new elementary movement even if a parametrized motor plan exists that covers a similar, related situation. Clearly, a method is needed that modulates the elementary movement through the meta-parameters of its representation. In this paper, we show how to learn such mappings from circumstances to meta-parameters using reinforcement learning. We introduce an appropriate reinforcement learning algorithm based on a kernelized version of the reward-weighted regression. We compare this algorithm to several previous methods on a toy example and show that it performs well in comparison to standard algorithms. Subsequently, we show two robot applications of the presented setup; i.e., the generalization of throwing movements in darts, and of hitting movements in table tennis. We show that both tasks can be learned successfully using simulated and real robots.
Bibtex:
@INPROCEEDINGS{ Kober-RSS-10, AUTHOR = {J. Kober AND E. Oztop AND J. Peters}, TITLE = {Reinforcement Learning to adjust Robot Movements to New Situations}, BOOKTITLE = {Proceedings of Robotics: Science and Systems}, YEAR = {2010}, ADDRESS = {Zaragoza, Spain}, MONTH = {June}, DOI = {10.15607/RSS.2010.VI.005} }