Robotics: Science and Systems XIV
EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based Cameras
Alex Zhu, Liangzhe Yuan, Kenneth Chaney, Kostas DaniilidisAbstract:
Event-based cameras have shown great promise in a variety of situations where frame based cameras suffer, such as high speed motions and high dynamic range scenes. However, developing algorithms for event measurements requires a new class of hand crafted algorithms. Deep learning has shown great success in providing model free solutions to many problems in the vision community, but existing networks have been developed with frame based images in mind, and there does not exist the wealth of labeled data for events as there does for images for supervised training. To these points, we present EV-FlowNet, a novel self-supervised deep learning pipeline for optical flow estimation for event based cameras. In particular, we introduce an image based representation of a given event stream, which is fed into a self-supervised neural network as the sole input. The corresponding grayscale images captured from the same camera at the same time as the events are then used as a supervisory signal to provide a loss function at training time, given the estimated flow from the network. We show that the resulting network is able to accurately predict optical flow from events only in a variety of different scenes, with performance competitive to image based networks. This method not only allows for accurate estimation of dense optical flow, but also provides a framework for the transfer of other self-supervised methods to the event-based domain.
Bibtex:
@INPROCEEDINGS{Zhu-RSS-18, AUTHOR = {Alex Zhu AND Liangzhe Yuan AND Kenneth Chaney AND Kostas Daniilidis}, TITLE = {EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based Cameras}, BOOKTITLE = {Proceedings of Robotics: Science and Systems}, YEAR = {2018}, ADDRESS = {Pittsburgh, Pennsylvania}, MONTH = {June}, DOI = {10.15607/RSS.2018.XIV.062} }