Robotics: Science and Systems XXI
Effective Sampling for Robot Motion Planning Through the Lens of Lattices
Itai Panasoff, Kiril SoloveyAbstract:
Sampling-based methods for motion planning, which capture the structure of the robot's free space via (typically random) sampling, have gained popularity due to their scalability, simplicity, and for offering global guarantees, such as probabilistic completeness and asymptotic optimality. Unfortunately, the practicality of those guarantees remains limited as they do not provide insights into the behavior of motion planners for a finite number of samples (i.e., a finite running time). In this work, we harness lattice theory and the concept of (δ, ε)-completeness by Tsao et al. (2020) to construct deterministic sample sets that endow their planners with strong finite-time guarantees while minimizing running time. In particular, we introduce a highlyefficient deterministic sampling approach based on the Ad* lattice, which is the best-known geometric covering in dimensions ≤ 21. Using our new sampling approach, we obtain at least an order-ofmagnitude speedup over existing deterministic and uniform random sampling methods for complex motion-planning problems. Overall, our work provides deep mathematical insights while advancing the practical applicability of sampling-based motion planning. https://github.com/MRSTechnion/lattice-sampling-mp
Bibtex:
@INPROCEEDINGS{PanasoffI-RSS-25, AUTHOR = {Itai Panasoff AND Kiril Solovey}, TITLE = {{Effective Sampling for Robot Motion Planning Through the Lens of Lattices}}, BOOKTITLE = {Proceedings of Robotics: Science and Systems}, YEAR = {2025}, ADDRESS = {LosAngeles, CA, USA}, MONTH = {June}, DOI = {10.15607/RSS.2025.XXI.048} }